tovább fel vissza

General relativity

Dr. Gyula Bene
Department for Theoretical Physics, Loránd Eötvös University
Pázmány Péter sétány 1/A, 1117 Budapest
3. week

The laws of physics in curved spacetime

Motion of mass point in gravitational field
Principle of least action: $$\begin{align} \delta S=-mc \delta\;\int ds =0 \end{align}$$ Equation of motion: $$\begin{align} \frac{Du^i}{Ds}=0 \end{align}$$ ( $u^i=\frac{dx^i}{ds}$ stands for the four velocity), i.e. $$\begin{align} \frac{d^2 x^i}{ds^2}+\Gamma^i_{\phantom{1}kl}\frac{d x^k}{ds}\frac{d x^l}{ds}=0 \end{align}$$ Hamilton-Jacobi equation $$\begin{align} p^i=mcu^i \end{align}$$ $$\begin{align} p_ip^i=m^2c^2 \end{align}$$ $$\begin{align} g^{ik}\frac{\partial S}{\partial x^i}\frac{\partial S}{\partial x^k}-m^2c^2=0 \end{align}$$ Light propagation $$\begin{align} \frac{d k^i}{d\lambda}+\Gamma^i_{\phantom{1}kl}k^k k^l=0 \end{align}$$ Weak gravitational field
Non-relativistic Lagrangian: $$\begin{align} L=-mc^2+\frac{mv^2}{2}-m\varphi \end{align}$$ $$\begin{align} ds^2=(c^2+2\varphi)dt^2-d\bf{r}^2 \end{align}$$ $$\begin{align} g_{00}=1+\frac{2\varphi}{c^2} \end{align}$$ Static gravitational field, gravitational redshift
Frequency measured in proper time: $$\begin{align} \omega=\frac{\omega_0}{\sqrt{g_{00}}}\approx \omega_0\left(1-\frac{\varphi}{c^2}\right) \end{align}$$ $$\begin{align} \Delta \omega=\frac{\varphi_1-\varphi_2}{c^2}\omega\phantom{reds} \end{align}$$ Maxwell's equations in gravitational field
Field tensor: $$\begin{align} F_{ik}=A_{k;i}-A_{i;k}=\frac{\partial A_k}{\partial x^i}-\frac{\partial A_i}{\partial x^k} \end{align}$$ Four electric current density: $$\begin{align} j^i=\frac{\rho c}{\sqrt{g_{00}}}\frac{dx^i}{dx^0} \end{align}$$ Maxwell's equations: $$\begin{align} \frac{\partial F_{ik}}{\partial x^l}+\frac{\partial F_{li}}{\partial x^k}+\frac{\partial F_{kl}}{\partial x^i}=0 \end{align}$$ $$\begin{align} F^{ik}_{;k}=\frac{1}{\sqrt{-g}}\frac{\partial }{\partial x^k}\left(\sqrt{-g}F^{ik}\right)=-\frac{j^i}{\epsilon_0 c^2} \end{align}$$ Motion of charged particle in electromagnetic and gravitational fields: $$\begin{align} m\left(\frac{d u^i}{ds}+\Gamma^i_{\phantom{1}kl}u^k u^l\right)=qF^{ik}u_k \end{align}$$
tovább fel vissza
bene@arpad.elte.hu