Engedélyezze a JavaScript-et az oldal helyes működéséhez!
tovább fel vissza

General relativity

Dr. Gyula Bene
Department for Theoretical Physics, Loránd Eötvös University
Pázmány Péter sétány 1/A, 1117 Budapest
8. week

Conservation laws

In curved spacetime the energy-momentum tensor satisfies the divergence equation \[\begin{align} T^{k}_{i;k}=0 \end{align}\] which may be written as \[\begin{align} T^{k}_{i;k}=\frac{1}{\sqrt{-g}}\frac{\partial \left(T^{k}_{i}\sqrt{-g}\right)}{\partial x^k}- \frac{1}{2}\frac{\partial g_{kl}}{\partial x^i}T^{kl}=0\;. \end{align}\] It does not imply a conservation law.

Reason: the combined energy and momentum of gravitational field and matter is conserved.

Determining the conserved four-momentum

Based on Einstein's equation we are looking for such an expression We do the calculation in a locally geodetic (inertial) frame, so first derivatives of the metric and Christoffel's symbols vanish at a given point. Thus we have there \[\begin{align} T^{ik}_{;k}=\frac{\partial T^{ik}}{\partial x^k}=0 \end{align}\] We cast \(T^{ik}\) with the help of Einstein's equation to the form \[\begin{align} T^{ik}=\frac{\partial \eta^{ikl}}{\partial x^l}\;. \end{align}\] where \[\begin{align} \eta^{ikl}=-\eta^{ilk} \end{align}\] Hence the continuity equation is automatically satisfied.

To this end we start from Einstein's equations: \[\begin{align} T^{ik}=\frac{c^4}{8\pi k}\left({\mathcal R}_{ik}-\frac{1}{2}g_{ik}{\mathcal R}\right) \end{align}\] In a locally geodetic system we have \[\begin{align} {\mathcal R}^{ik} = \frac{1}{2}\;g^{im}g^{kp}g^{ln}\left\{\frac{\partial^2 g_{lp}}{\partial x^m \partial x^n} +\frac{\partial^2 g_{mn}}{\partial x^l \partial x^p} -\frac{\partial^2 g_{ln}}{\partial x^m \partial x^p} -\frac{\partial^2 g_{mp}}{\partial x^l \partial x^n} \right\} \end{align}\] We get: \[\begin{align} T^{ik}=\frac{\partial}{\partial x^l}\left\{\frac{1}{(-g)}\right.&\underbrace{\frac{c^4}{16\pi k}\frac{\partial}{\partial x^m} \left[(-g)\left(g^{ik}g^{lm}-g^{il}g^{km}\right)\right]}&\left.\phantom{\frac{1}{(-g)}}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\right\}\\ &b^{ikl}& \end{align}\] (\(\eta^{ikl}=\frac{1}{(-g)}b^{ikl}\)) Still in locally geodetic system: \[\begin{align} T^{ik}=\frac{1}{(-g)}\frac{\partial b^{ikl}}{\partial x^l} \end{align}\] or \[\begin{align} (-g)T^{ik}=\frac{\partial b^{ikl}}{\partial x^l} \end{align}\] We return to curved coordinates. Then \[\begin{align} (-g)\left(T^{ik}+t^{ik}\right)=\frac{\partial b^{ikl}}{\partial x^l} \end{align}\] where \(t^{ik}\) depends at most on the first derivatives of the metric. Explicitely we have \[\begin{align} t^{ik}&=\frac{c^4}{16\pi k}\left\{\left(g^{il}g^{km}-g^{ik}g^{lm}\right)\left(2\Gamma^n_{lm}\Gamma^p_{np}-\Gamma^n_{lp}\Gamma^p_{mn}-\Gamma^n_{ln}\Gamma^p_{mp}\right)\right. \\ &+\left.g^{il}g^{mn}\left(\Gamma^k_{lp}\Gamma^p_{mn}+\Gamma^k_{mn}\Gamma^p_{lp}-\Gamma^k_{np}\Gamma^p_{lm} -\Gamma^k_{lm}\Gamma^p_{np}\right)\right. \\ &+\left.g^{kl}g^{mn}\left(\Gamma^i_{lp}\Gamma^p_{mn}+\Gamma^i_{mn}\Gamma^p_{lp}-\Gamma^i_{np}\Gamma^p_{lm} -\Gamma^i_{lm}\Gamma^p_{np}\right)\right. \\ &+\left.g^{lm}g^{np}\left(\Gamma^i_{ln}\Gamma^k_{mp}-\Gamma^i_{lm}\Gamma^k_{np}\right) \right\} \phantom{pszeud} \end{align}\] \(t^{ik}\) is the pseudo-tensor of energy-momentum of gravity.

Since \[\begin{align} b^{ikl}=-b^{ilk}\;, \end{align}\] it is identically true, that \[\begin{align} \frac{\partial}{\partial x^k}(-g)\left(T^{ik}+t^{ik}\right)=0 \end{align}\] Therefore \[\begin{align} P^i=\frac{1}{c}\int (-g)\left(T^{ik}+t^{ik}\right)dS_k \end{align}\] is a conserved quantity. This is the combined four momentum of mattar and gravity. (Not a four vector!)

Since \((-g)\left(T^{ik}+t^{ik}\right)\) is symmetric, there exist a conserved four-angular momentum, too: \[\begin{align} J^{ik}=\int \left(x^idP^k-x^kdP^i\right)=\frac{1}{c}\int \left[x^i\left(T^{kl}+t^{kl}\right) -x^k\left(T^{il}+t^{il}\right)\right](-g)dS_l \end{align}\] Conservation of center of mass corresponds to conservation of \(J^{0\alpha}\): \[\begin{align} x^0\int \left(T^{\alpha 0}+t^{\alpha 0}\right)(-g)dV-\int x^\alpha\left(T^{00}+t^{00}\right)(-g)dV=const. \end{align}\] Otherwise: \[\begin{align} X^\alpha=const.'+\frac{P^\alpha}{P^0}x^0 \end{align}\] where \[\begin{align} X^\alpha=\frac{\int x^\alpha\left(T^{00}+t^{00}\right)(-g)dV}{\int \left(T^{00}+t^{00}\right)(-g)dV} \end{align}\] Momentum and angular momentum expressed as surface integrals: \[\begin{align} P^i=\frac{1}{c}\int \frac{\partial b^{i0l}}{\partial x^l}dV=\frac{1}{c}\int \frac{\partial b^{i0\alpha}}{\partial x^\alpha}dV= \frac{1}{c}\oint b^{i0\alpha}df_{\alpha} \end{align}\] Similarly we get \[\begin{align} J^{ik}=\frac{1}{c}\oint \left(x^ib^{k0\alpha}-x^kb^{i0\alpha}+\lambda^{i0\alpha k}\right)df_{\alpha} \end{align}\]
tovább fel vissza
bene@arpad.elte.hu