| Year | Investigator | Accuracy | Method |
|---|---|---|---|
| 500? | Philoponus | "small" | drop tower |
| 1585 | Stevin | \(5\times 10^{-2}\) | drop tower |
| 1590? | Galileo | \(2\times10^{-2}\) | pendulum, drop tower |
| 1686 | Newton | \(10^{-3}\) | pendulum |
| 1832 | Bessel | \(2\times10^{-5}\) | pendulum |
| 1910 | Southerns | \(5\times10^{-6}\) | pendulum |
| 1918 | Zeeman | \(3\times10^{-8}\) | torsion balance |
| 1922 | Eötvös | \(5\times10^{-9}\) | torsion balance |
| 1923 | Potter | \(3\times10^{-6}\) | pendulum |
| 1935 | Renner | \(2\times10^{-10}\) | torsion balance |
| 1964 | Dicke,Roll,Krotkov | \(3\times10^{-11}\) | torsion balance |
| 1972 | Braginsky,Panov | \(10^{-12 }\) | torsion balance |
| 1976 | Shapiro, et al. | \(10^{-12 }\) | lunar laser ranging |
| 1981 | Keiser,Faller | \(4\times10^{-11 }\) | fluid support (swimming torsion balance with electrostatic restoring torque) |
| 1987 | Niebauer, et al. | \(10^{-10 }\) | drop tower |
| 1989 | Heckel, et al. | \(10^{-11}\) | torsion balance |
| 1990 | Adelberger, et al. | \(10^{-12}\) | torsion balance |
| 1999 | Baessler, et al. | \(5\times10^{-14 }\) | torsion balance |
| Amount (arcsec/century) | Cause |
|---|---|
| \(531.63 \pm 0.69\) | Gravity of other planets |
| \(0.0254\) | Oblateness of Sun (quadrupole momentum) |
| \(42.98 \pm 0.04\) | General relativity |
| \(574.64\pm 0.69\) | Sum |
| \(574.10\pm 0.65\) | Measurement |
\[\begin{align}
F&=\frac{k\;E/c^2\;M}{\rho^2+x^2}\\
F_y&=\frac{\rho\;k\;E/c^2\;M}{\left(\rho^2+x^2\right)^{\frac{3}{2}}}\\
\delta \varphi&=\frac{\Delta p}{E/c}=\frac{c}{E}\int_{-\infty}^{\infty}
F_y\frac{dx}{c}=\frac{c}{E}\int_{-\infty}^{\infty}
\frac{\rho\;k\;E/c^2\;M}{\left(\rho^2+x^2\right)^{\frac{3}{2}}}\frac{dx}{c} \\
&=\frac{kM}{c^2 \rho}\int_{-\infty}^{\infty}
\frac{1}{\left(1+\xi^2\right)^{\frac{3}{2}}}d\xi=\frac{kM}{c^2 \rho}\int_{-\pi/2}^{\pi/2} \cos \alpha\; d\alpha \\
&\left(\text{here }\xi=\frac{x}{\rho}={\rm tg}\;\alpha\;\right) \\
&=\frac{2kM}{c^2 \rho}
\end{align}\]
This is the half of the prediction of general relativity. The reason why we do
not get this manner the result of general relativity is that validity of
classical approximation two conditions are required: