1. Task: Heat diffusion on a rectangular plate

Bogye Baléazs
2019 July 03.

1 Task

The task was to simulate heat diffusion on a rectangular plate with the given
boundary conditions:

e on the left edge temperature is given, linear
e on the bottom there is a constant heat flux

e on the right and top edge there is perfect thermal insulation

The initial condition was that the plate has a linear temperature dependence
along the x axis too in addition to the first boundary condition.

2 Theory
.or
=
oT K
ot~ Cp M)

Where T is the temperature, j is the heat flux, « is the thermal conductivity,
C' is the heat capacity, and p is density. For simplicity’s sake in the simulation
Iset p, C, and & to 1.

Taking a rectangular grid mesh we can discretize T.
T;; =T(i x dx,j x dz)

Where 7 and j are the indices of the grid points, dx being the distance
between two neighbouring point. Then the Laplace operator (in infinitesimal
limit) turns into:

Tivj+Tij = 4T+ Tigrj + Tijj
dz?

AT ; ~ (2)



Of course on the boundary we have a special case, as at least one of these
neighbouring grid points don’t exist.
2.1 Insulation

There is no heat transfer between the point outside the mesh and the one inside.
One could imagine that point being at the same temperature, so we could just
remove that point from the Laplacian calculation along with a —T; ;.

T_1; ="To,

ATy, ~ To,j-1 — 3T0,jd+ Th,j + To,j+1
T

The same can be done in case multiple points are outside (corner).

2.2 Given temperature

This is the easiest, we don’t calculate the Laplace operator for this point as its
temperature is already given and there is no need to calculate anything to get
its value in the next time-step.

2.3 Given heat flux

Simply ignoring the outside point and adding a constant heat/second to the
system is not going to make a constant heat flux, as the point on the opposing
side is going to modify it.

Instead lets calculate the temperature the imaginary grid point should have
to make the the heat flux constant.

. oT
= —K—
J Ox
Z ~ Tl,] T—LJ
K 2dx
12dx
Ty;="T,;— jT (3)

So we can just add a new line of grid points (7 ;) with this temperature
and calculate for the real edge as if it was an inner part of the grid.



3 The program

I've written the program in C+4+, it requires 1inbcg from the Numerical Recipes
codes. The plate’s height /width ratio was set to 2. I used dx=1072, dt=0.1 x
10~%. T implemented both the explicit and implicit Euler-method.

T left 0 temperature in the top left corner
T left_gradient temperature gradient along left edge
T x_gradient temperature gradient along x axis in initial state
j-bottom heat flux on bottom
realWidth width of plate
realHeight height of plate
dx spatial discretization length
dt time discretiazion length
savelnterval Interval at which data file saves are made of the system

Table 1: The variable parameters of the program

3.1 Explicit Euler-method solution

For the explicit Euler method we just discretize (1), use forward time and cal-
culate the discretized Laplacian as seen in (2).

The solution is rather trivial, I used vectors of vectors (typedefed as Grid)
for the temperature data, set it to the initial state, then stepped in dt (set to

less than d;”—z) units until the time reached the preset goal.

The tricky part is setting the derivatives properly. I created a function called
ExplicitEulerInnerStep, this just calculates T cighbour — 15,5 in a given direc-
tion (it is templated, so optimizations are already made at compile time). After
this I just had to divide the grid into 9 areas, the middle, the middle-edges, and
the corners and give each one the directions it has neighbours in.

Of course we have to take into account the boundary conditions, at the left
edge its trivial, delta = 0. On the right and top it is already taken into account
by only using directions that exist from there. And on the bottom simply add

the Up direction instead of Down and the 7% term as seen in (3) .

3.2 Implicit Euler-method solution

For the implicit Euler-method first I needed to make the proper algebraic trans-
formations to bring the equations into matrix form.

T = T 4 dt - AT
Cp
dt s

T = 7 ST + T — AT TR 4 T



n+1 n+1 n-+1 n+1 n+1\ _ gm
T 1 4+48) — ST + T + T + 1) =T

Where S = dtcip. This is a linear matrix equation, if we think of T; ; as T},
where n = jnw +1, where nyy is the number of cells along the width of the plate.

For the boundary we can use the previous methods, using 3 (or 2 for cor-
ners) instead 4 neighbours (1-3S instead of 1-4S and ignoring the appropriate
T, term), and adding imaginary cells on the bottom for constant heat flux.
Thus N, the number of cells is actually ny x (ng + 1) including the imaginary
cells. ny is W, ny is H in the program.

So all that’s left is creating the matrix, where the diagonal elements are
1 4 NpeignS, and the neighbouring cells have —S for each row (cell). This is a
rather sparse matrix so I used linbcg to solve it.

The most difficult part was creating the proper matrix representation for
linbcg. InitGlobalSparseMatrix initializes the matrix, it calculates the num-
ber of non-zero elements, to allocate the proper array sizes for ija and sa then
one by one adds each cell’s (that is a single row of the matrix) non-zero members
to the sparse matrix. By default the addCellToMatrix function handles this, it
sets its own diagonal value to 147,455 and the value of each neighbouring cell
in its row to —9S in sa, also setting the proper index into ija. The proper di-
rections are set for each part of the grid (middle, edges, corners). Also of course
the imaginary bottom edge cells don’t need to be calculated as they will be reas-
signed according to (3), and the left edge is constant so its derivative is simply 0.

After creating the matrix all that is left is for each time-step creating the
right-hand side vector B, that is T with the properly modified imaginary bottom,
and solving the linear equation with linbcg, and of course saving the data
periodically.

It worth noting that the implicit solution is much slower using the same
time-step but it is stable even with much larger time steps.

4 Output and visualization

I decided to make the visualization apart from the C++ program. This way
it is not necessary to wait for the program to simulate the system again just
to re-watch the simulation, other algorithms/programs can be used on the data
without the need to reimplement them in the program. Also this way the play-
back speed can be properly set.

That is why I made a Python script to visualize the data I got from the
program (saved as <time>.dat files at equal time intervals). It is important to
mention that for the output to be saved there needs to be an ”explicit_euler”
and "implicit_euler” named folder next to the program. The data is saved in



simple tab separated matrix form.

The python script loads the data from the ”explicit_euler” and ”implicit_euler”
folder and crates an mp4 animation out of it (the script has to be placed next
to the folders/program). The script has dx as a parameter inside it to properly
rescale the axes.



