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1 Introduction

The study of the heat diffusion is important to understand how the heat
evolves through time in different materials with different boundary condi-
tions. Sometimes, it is quite difficult or impossible to solve the problem an-
alytically; therefore, simulations using the heat equations is important, for
example, to model a new product, it is possible to test dimensions, geometry
and materials to choose the best parameters in a simulated environment.

In this project it will be a rectangular metal sheet, with specific boundary
conditions, such as, opposite sides with constant temperature, another side
with heat flux and the last side have perfect insulation. For that the Crank-
Nicolson method will be used.

2 Physical Principles

The heat flows from hot to cold, enunciating it mathematically we can say
that the heat flow (HHH) is proportional to the gradient of the temperature
(T (xxx, t)) across the material,

HHH = −k555 T (xxx, t), (1)

where k is the thermal conductivity. To quantize the total amount of heat
(Q(t)) in a specific time we can calculate by integrating the temperature
over the volume multiplied by a constant of proportionality, so it is written
as

Q(t) =

∫
dxxxCpρ(xxx)T (xxx, t), (2)

where Cp is the specific heat and ρ(xxx) is the density. If we consider that
the energy is conserved in the system, the rate that Q decreases over time
is equal to the heat that flows from the material; therefore, the equation is

∂T (xxx, t)

∂t
=

k

cpρ
555 2T (xxx, t), (3)

to simplify we can compress the constants, using the definition of the thermal
diffusivity (α), which is

α =
k

cpρ
, (4)

when we considered that the energy is conserved, it implies that the material
is isolated from the exterior. In other words, the heat does not flow outside
the system. For our case, we used Cartesian coordinates in 2 dimensions, so
the final partial differential equation is

∂T (x, y, t)

∂t
= α

(
∂2

∂x2
+

∂2

∂y2

)
T (x, y, t). (5)
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However, in our case we have a constant heat flux coming in from one
of the sides, so we have that

∂T (x, y, t)

∂t
= hf(x, y), (6)

where h is just a positive constant that is the rate of the heat being transfer
trough the system, and f(x, y) is a function to define the boundary condi-
tions of this source of heat. Adding this condition, we get a modified heat
equation as [2] [1]

∂T (x, y, t)

∂t
= α

(
∂2

∂x2
+

∂2

∂y2

)
T (x, y, t) + hT (x, y, t)f(x, y). (7)

3 Numerical Method

To solve Partial Differential Equations (PDE) a good method is the Crank-
Nicolson, it is more precise and stable than the Time-stepping method [1].

3.1 Crank-Nicolson

To understand the Crank-Nicolson method in 2D, it is better to derive first
the one-dimensional case, because after all the two-dimensional one is similar
to solve the one-dimensional problem twice. The computational part of the
problem is to calculate a tridiagonal matrix equation, which is explained in
the last subsection.

3.1.1 Crank-Nicolson 1D

The heat equation (3) in one dimension can be written as a time derivative
in the left-hand side. For this, we use a central-difference approximation
with a split time step (t → t + ∆t/2). Moreover, for the space derivative
in the right-hand side, we also perform a central-difference approximation,
but now it is a double derivative and the time is t = t + ∆t; therefore, the
expression can be approximated by

T τ+1
i − T τi

∆t
=

α

2(∆x)2
[(T τ+1

i+1 − 2T τ+1
i + T τ+1

i−1 ) + (T τi+1 − 2T τi + T τi−1)], (8)

to simplify we can define

η =
α∆t

2(∆x)2
, (9)

so it leads to

T τ+1
i − T τi = η[(T τ+1

i+1 − 2T τ+1
i + T τ+1

i−1 ) + (T τi+1 − 2T τi + T τi−1)], (10)
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reordering the equation such that the future values of temperature are in
the left and present values in the right, we have

−ηT τ+1
i+1 + (1 + 2η)T τ+1

i − ηT τ+1
i−1 = ηT τi+1 + (1− 2η)T τi + ηT τi−1. (11)

We can rewrite this expression in matrix form like

(1 + 2η) −η 0 0 . . . 0
−η (1 + 2η) −η 0 . . . 0
0 −η (1 + 2η) −η . . . 0
...

...
...

...
...

...
0 0 . . . −η (1 + 2η) −η
0 0 . . . 0 −η (1 + 2η)





T τ+1
1

T τ+1
2

T τ+1
3
...

T τ+1
i−1

T τ+1
i


=



T τ1
T τ2
T τ3
...

T τi−1

T τi


,

(12)
note that the first matrix is tridiagonal, the second is the temperature values
of the future time and the third is the values in the present time [1].

3.1.2 Crank-Nicolson 2D

However, the project is a two-dimensional room, so we actually need to solve
equation 5. As same as before, we use central-difference with t = t + ∆t,
then we have that

T τ+1
i,j − T τi,j

∆t
=

α

2(∆x)2
[(T τ+1

i+1,j − 2T τ+1
i,j + T τ+1

i−1,j) + (T τi+1,j − 2T τi,j + T τi−1,j)]

+
α

2(∆y)2
[(T τ+1

i,j+1 − 2T τ+1
i,j + T τ+1

i,j−1) + (T τi,j+1 − 2T τi,j + T τi,j−1)],

(13)
we can make the approximation that ∆x = ∆y, but the geometry of the
system is not a square; therefore, the number of steps are different for each
direction. Similarly to the one dimensional case, we can simplify the equa-
tion using 9, then we have

T τ+1
i,j − T

τ
i,j = η[(T τ+1

i+1,j − 2T τ+1
i,j + T τ+1

i−1,j) + (T τi+1,j − 2T τi,j + T τi−1,j)

+ (T τ+1
i,j+1 − 2T τ+1

i,j + T τ+1
i,j−1) + (T τi,j+1 − 2T τi,j + T τi,j−1)],

(14)
defining the operators

δ2xfi,j = fi+1,j − 2fi,j + fi−1,j δ2yfi,j = fi,j+1 − 2fi,j + fi,j+1, (15)

we can rewrite as

T τ+1
i,j − T

τ
i,j = η[δ2xT

τ+1
i,j + δ2xT

τ
i,j + δ2yT

τ+1
i,j + δ2yT

τ
i,j ], (16)

reordering the equation

(1− ηδ2x − ηδ2y)T τ+1
i,j = (1 + ηδ2x + ηδ2y)T

τ
i,j , (17)
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or
(1− ηδ2x)(1− ηδ2y)T τ+1

i,j = (1 + ηδ2x)(1 + ηδ2y)T
τ
i,j , (18)

if we consider η2δ2xδ
2
y = η2δ2yδ

2
x
∼= 0, since η is a small number.

Now we separate into two equations using an intermediate matrix T ∗
i,j

as follows
(1− ηδ2x)T ∗

i,j = (1 + ηδ2y)T
τ
i,j

(1− ηδ2y)T τ+1
i,j = (1 + ηδ2x)T ∗

i,j ,
(19)

to check if the separation works, we substitute the second equation in 19 in
the left-hand side of 18, then change the order of the multiplication so we
can substitute the first equation of 19 to get the right-hand side of 18, as
seen below

(1− ηδ2x)(1− ηδ2y)T τ+1
i,j = (1− ηδ2x)(1 + ηδ2x)T ∗

i,j

= (1 + ηδ2x)(1− ηδ2x)T ∗
i,j = (1 + ηδ2x)(1 + ηδ2y)T

τ
i,j .

(20)

Now letting 19 more explicit

−ηT ∗
i+1,j + (1 + 2η)T ∗

i,j − ηT ∗
i−1,j = ηT τi,j+1 + (1− 2η)T τi,j + ηT τi,j−1

−ηT τ+1
i,j+1 + (1 + 2η)T τ+1

i,j − ηT
τ+1
i,j−1 = ηT ∗

i+1,j + (1− 2η)T ∗
i,j + ηT ∗

i−1,j ,
(21)

which is similar to 11, we have just to remember that the number of steps
is different in each direction [3].

All of this was for the case where the system is isolated from the external
environment. Nonetheless, it is easy to implement the heat source, we have
to add the constant h in the main diagonal of the matrix, then the uncoupled
form is [1]

−ηT ∗
i+1,j + (1 + 2η − h)T ∗

i,j − ηT ∗
i−1,j = ηT τi,j+1 + (1− 2η + h)T τi,j + ηT τi,j−1

−ηT τ+1
i,j+1 + (1 + 2η − h)T τ+1

i,j − ηT
τ+1
i,j−1 = ηT ∗

i+1,j + (1− 2η + h)T ∗
i,j + ηT ∗

i−1,j .

(22)
The f(x, y), the boundary conditions of the heat source is added as a

factor just for certain positions, the equation is the same, but inside the
code, it is checked if the calculation is being done on the bottom, so then we
can add the this effect, and it consider as zero for all other positions. There
are probably better ways to do it, but this was the simplest solution found.

3.1.3 Solving a Tridiagonal Matrix

Let’s first consider the following matrix equation

b1 c1 0 0 . . . 0
a2 b2 c2 0 . . . 0
0 a3 b3 c3 . . . 0
...

...
...

...
...

...
0 0 . . . an−1 bn−1 cn−1

0 0 . . . 0 an bn





x1
x2
x3
...

xn−1

xn


=



d1
d2
d3
...

dn−1

dn


, (23)
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to simplify this equation we can make the all the elements in the main
diagonal equal to 1, and the elements of the lower diagonal equal to zero.
To accomplish that, we need to divide the first row by the first element (b1)
and subtract from second row the first row times the element a2, such that

1 c1
b1

0 0 . . . 0

a2 − a2 b2 − a2c1
b1

c2 0 . . . 0

0 a3 b3 c3 . . . 0
...

...
...

...
...

...
0 0 . . . an−1 bn−1 cn−1

0 0 . . . 0 an bn





x1
x2
x3
...

xn−1

xn


=



d1
b1
d2
d3
...

dn−1

dn


, (24)

doing the same for the next rows, we get

1 h1 0 0 . . . 0
0 1 h2 0 . . . 0
0 0 1 h3 . . . 0
...

...
...

...
...

...
0 0 . . . 0 1 hn−1

0 0 . . . 0 0 1





x1
x2
x3
...

xn−1

xn


=



p1
p2
p3
...

pn−1

pn


, (25)

where

h1 =
c1
b1

p1 =
b1
b1
, (26)

and

hi =
ci

bi − aihi−1
pi =

di − aipn−1

bi − aihi−1
, (27)

then
xn = pn xi = pi − hixi+1, (28)

it is important to notice that the vector x needs to be computed backward
[1].

4 Results and Discussion

The program is able to simulate any rectangular shape, the sides are defined
as parameters. It is also possible to set the precision both in time and space,
in other words, the size of the steps. From the Von Neumann stability if
we make the spatial stepping smaller it gets lets stable, and if we make the
time stepping smaller it gets more stable, the thermal diffusivity is also an
important factor, but it is assumed to be a constant. Therefore, to achieve a
good resolution we need to find good values for the time and spatial stepping
[1].

The thermal diffusivity chosen was from copper, and used as a constant
value of α = 1.11 × 10−4. In reality, it is not a constant, it varies over
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the temperature, but it doesn’t vary too much. It is possible to add this
effect by recalculating the diffusivity at each time and position based on the
current temperature, but this was not include, because it is a small effect.

It is also possible to set as a parameter the strength of the heat source in
the bottom, as same as the initial temperature of the copper sheet and the
temperatures of the boundary conditions on the left and right border. These
conditions are a linear increase of temperature on the right and decrease
on the left. This is interesting because it shows a symmetric distribution
with no heat source on the bottom, the image is symmetric along the main
diagonal. However, the system actually has a heat source, so we can see the
symmetry breaking on the bottom, and clearly see the effects of the heat
source.

For all the simulation shown here, the time step was 0.5 s to compensate
the resolution of 1 cm, even though 0.5 s doesn’t show much effect between
each step, it is necessary to keep the stability to have a precision of 1 cm.
For testing, the spatial resolution were decreased so the time step could
increase and the simulation took less computer time.

The initial temperature is also the same for all simulation, it is 27 ◦C,
and for most of simulations the boundary conditions on the left and right
side goes from 0 ◦C to 100 ◦C, just one of them was from 0 ◦C to 200 ◦C
because it was simulated for a longer period of time, so we could see for
longer the heat source effect and don’t change the temperature scale during
the whole process.

4.1 No Heat Source

Like mention before, to better see the effect of the heat source, we can look
at a simulation without it, to look at the symmetry of the system. The
dimensions of the rectangular is 3m × 2m. In Figure 1 , we can see the
initial state, in Figure 2 is t = 1 min, in Figure 3 is t = 5 min, in Figure 4
is t = 10 min, and finally in Figure 5 is t = 30 min.

It is clear to see that the images look symmetric in relation to the main
diagonal. There is also a gif that shows the evolution in every 30 s.

4.2 With Heat Source

It was simulated four different cases. The first is a rectangle of 3m×2m and
h = 7.0×10−4. Again we have simulation at different times. At t = 10 min,
t = 20 min, and t = 30 min in Figure 6,7 and 8 respectively. There is also
a gif for better visualization.

The second case the source of the heat was increase to h = 9.0 × 10−4.
Once more, we have simulation at different times. At t = 10 min, t =
20 min, and t = 30 min in Figure 9, 10 and 11 respectively.The gif is also
available.
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Figure 1: No heat source, at t = 0 min

Figure 2: No heat source, at t = 1 min

Figure 3: No heat source, at t = 5 min
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Figure 4: No heat source, at t = 10 min

Figure 5: No heat source, at t = 30 min

Figure 6: First case with heat source, at t = 10 min
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Figure 7: First case with heat source, at t = 20 min

Figure 8: First case with heat source, at t = 30 min

Figure 9: Second case with heat source, at t = 10 min
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Figure 10: Second case with heat source, at t = 20 min

Figure 11: Second case with heat source, at t = 30 min
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Figure 12: Third case with heat source, at t = 20 min

The third case, the rectangle is 1.5m × 2.5m and h = 5.0 × 10−4. The
same heat distribution goes further in time, now we have the results from t =
20 min, t = 40 min, and t = 60 min in Figure 12, 13, and 14 respectively,
the animation was also made.

For the fouth and final case, this is the simulation that went even further
in time and also a smaller rectangle of 1m× 1.5m. The times rendered were
t = 15 min, t = 30 min, t = 45 min, t = 60 min, t = 75 min, t = 90 min,
t = 105 min, and t = 120 min all in Figure 15, 16, 17, 18, 19, 20, 21, and
22. It was also created a gif with frames representing each minute.

From all the cases, it is possible to see a tail on the heat distribution on
the bottom, and this is due to the heat source. It is breaking the symmetry.

5 Conclusion

The heat equation can be easily visualized with heat maps, and the anima-
tion also makes it even more clear to see the phenomenon. It was already
mention in the report parts where the code could be improved, but there is
another feature that could be added is real time simulation or an automatic
creation of the gif.

It was initially a challenge to insert the heat source, because it is easier
if the whole system is under this source not just the bottom. The solution
was just add this effect when the routine was going over the lowest layer in
the mash.
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Figure 13: Third case with heat source, at t = 40 min

Figure 14: Third case with heat source, at t = 60 min
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Figure 15: Fourth case with heat source, at t = 15 min

Figure 16: Fourth case with heat source, at t = 30 min
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Figure 17: Fourth case with heat source, at t = 45 min

Figure 18: Fourth case with heat source, at t = 60 min
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Figure 19: Fourth case with heat source, at t = 75 min

Figure 20: Fourth case with heat source, at t = 90 min

16



Figure 21: Fourth case with heat source, at t = 105 min

Figure 22: Fourth case with heat source, at t = 120 min
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There were a few other problems with the boundary conditions, in how
to properly define it and how to compute the derivatives in this region.
However, it was solved, just by trying over again with more caution.

In general, the simulation worked properly, and it showed interring re-
sults . It was possible to learn more about the modern numerical methods.
The language used was Python, because I am more used to it, for coding,
including data structure, and visualization.
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