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3.5.5 Non-homogeneous Boundary Conditions 
The method of separation of variables can only be applied to 1-D transient problems where both 
spatial boundary conditions are homogeneous.  In Sections 3.5.2 and 3.5.4, a single and obvious 
transformation was sufficient to make both spatial boundary conditions homogeneous.  In many 
problems this will not be the case and therefore more advanced techniques will be required.  
Section 2.3.2 discusses methods for breaking 2-D steady problems with non-homogeneous terms 
into sub-problems that can be solved either by separation of variables or by the solution of an 
ordinary differential equation.  In Section 2.4, superposition for 2-D steady-state problems is 
discussed.  These techniques for solving problems with non-homogeneous boundary conditions 
using separation of variables remain valid for 1-D transient problems.   
 
For example, consider the problem illustrated in Figure 3-31.  A plane wall is initially at 
temperature Tini = 20°C when at time t = 0 the right side of the wall (at x = L) is subjected to a 
heat flux sq′′  = 5000 W/m2.  The left side of the wall is maintained at Ts = 20°C.  The wall is L= 
0.1 m thick and made of material with k = 10 W/m-K and α = 1x10-4 m2/s. 
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Figure 3-31: Plane wall subjected to a heat flux. 

 
The inputs are entered in EES: 
 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
"Inputs" 
T_ini=converttemp(C,K,20 [C]) "initial temperature" 
T_s=converttemp(C,K,20 [C]) "surface temperature" 
q``_dot=5000 [W/m^2] "heat flux" 
k=10 [W/m-K]  "conductivity" 
alpha=1e-4 [m^2/s] "thermal diffusivity" 
L=0.1 [m] "thickness of the wall" 
 
The governing partial differential equation for the problem is: 
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The boundary conditions for the problem are: 
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 0x sT T= =  (3-377) 
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 (3-378) 

  
 0t iniT T= =  (3-379) 
 
Split Solutions into Homogeneous and Particular Components 
Both of the spatial boundary conditions for this problem are non-homogeneous and there is no 
simple transformation (e.g., subtracting Ts) that can make them both homogeneous.  Therefore, it 
is not possible to apply separation of variables to the problem as it is stated.  However, by 
following the steps outlined in Section 2.3, it is possible to divide the problem into a 
homogeneous problem, Th(x,t) that can be solved using separation of variables and a particular 
solution that is only a function of x, X(x): 
 
 ( ) ( ) ( ), ,hT x t T x t X x= +  (3-380) 
 
Equation (3-380) is substituted into the partial differential equation, Eq. (3-376), and each of the 
boundary conditions, Eqs. (3-377) through (3-379): 
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 , 0h t iniT X T= + =  (3-384) 
 
Enforce a Homogeneous Partial Differential Equation 
It is necessary that the partial differential equation for Th be homogeneous: 
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The ordinary differential equation for the particular solution results from whatever is left in Eq. 
(3-381) once Eq. (3-385) is enforced: 
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Solve the Ordinary Differential Equation for the Particular Solution 
Integrating Eq. (3-386) one time leads to: 
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=  (3-387) 

 
where C1 is a constant of integration.  Integrating again leads to: 
 
 1 2X C x C= +  (3-388) 
 
where C2 is another constant of integration. 
 
Enforce Spatial Homogeneous Boundary Conditions 
Both boundary conditions for Th must be homogeneous in order to apply separation of variables.  
The homogeneous boundary condition required at x = 0 is: 
 
 , 0 0h xT = =  (3-389) 
 
Therefore, Eq. (3-382) is reduced to: 
 
 0x sX T= =  (3-390) 
 
The homogeneous boundary condition required at x = L is: 
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Therefore, Eq. (3-383) is reduced to: 
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Substituting Eq. (3-388) into Eqs. (3-392) and (3-390) leads to the particular solution: 
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Notice that the particular solution is equivalent to the steady-state temperature distribution in the 
material; this is the typical result. 
 
Determine the Initial Condition for the Homogeneous Solution 

Substituting Eq. (3-393) into Eq. (3-384) leads to: 
  

 , 0
s

h t ini s
qT T T x
k=

′′
= − −  (3-394) 

 
Solve the Homogeneous Problem using Separation of Variables 
It is straightforward to apply separation of variables to solve for Th.  The general solution that 
satisfies the partial differential equation, Eq. (3-385), and both spatial boundary conditions, Eqs. 
(3-389) and (3-391), is: 
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where the eigenvalues are given by: 
  

 ( )2 1
2i

i
L

π
λ

−
=  (3-396) 

 
The constants are selected so that the general solution satisfies the initial condition, Eq. (3-394): 
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Applying the orthogonality of the eigenfunctions leads to: 
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The integrals are evaluated in Maple: 
 
> restart; 
> assume(i,integer); 
> lambda:=(2*i-1)*Pi/(2*L); 

 := λ
( ) − 2 i~ 1 π

2 L  

> int(sin(lambda*x)*sin(lambda*x),x=0..L); 
L
2  

> int(sin(lambda*x),x=0..L); 
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2 L
( ) − 2 i~ 1 π  

> int(x*sin(lambda*x),x=0..L); 
4 ( )-1

( ) + 1 i~
L2

π2 ( ) −  + 4 i~2 4 i~ 1
 

 
Substituting these results into Eq. (3-398) leads to: 
  

 ( ) ( )
( )( )

( )
1

2 2

8 14
2 1 4 4 1

i
s

i ini s

LqC T T
i k i iπ π

+−′′
= − −

− − +
 (3-399) 

 
The solution is obtained by substituting Eq. (3-395) and (3-393) into Eq. (3-380): 
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where the constants are given by Eq. (3-399) and the eigenvalues are given by Eq. (3-396).  The 
solution is implemented in EES: 
 
N_term=10 [-]  "number of terms" 
duplicate i=1,N_term 
 lambda[i]=(2*i-1)*pi/(2*L) "eigenvalue" 
 C[i]=(T_ini-T_s)*(4/(2*i-1)/Pi)-q``_dot*(8*(-1)^(1+i)*L/Pi^2/(4*i^2-4*i+1))/k 
  "constants" 
end 
 
The solution is evaluated at a particular value of dimensionless position and Fourier number: 
 
x_hat=0.1 [-]  "dimensionless position" 
Fo=1 [-]   "Fourier number" 
x=x_hat*L   "position" 
time=Fo*L^2/alpha "time" 
duplicate i=1,N_term 
 T_h[i]=C[i]*sin(lambda[i]*x)*exp(-lambda[i]^2*alpha*time)  
end 
T=sum(T_h[1..N_term])+T_s+q``_dot*x/k "temperature" 
T_C=converttemp(K,C,T) "in C" 
 
Figure 3-32 illustrates temperature distribution in the wall at various values of Fourier number.  
Notice that a thermal wave emanates from the right side of the wall (where the flux is applied) 
and reaches the left side at Fo ≈  0.2.  The wall reaches steady state at Fo ≈ 1.  
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Figure 3-32: Temperature as a function of dimensionless position for various values of Fourier number. 

 


