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INTRODUCTION
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Type of problems

We will consider a differential equation :

Lu (x) = S (x) x ∈ U (1)

Bu (y) = 0 y ∈ ∂U (2)

where L are B are linear differential operators.
In the following, we will only consider one-dimensional cases U = [−1; 1].
We will also assume that u can be expanded on some functions :

ũ (x) =
N∑

n=0

ũnφn (x) . (3)

Depending on the choice of expansion functions φk, one can generate :

finite difference methods.

finite element method.

spectral methods.
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The weighted residual method

Given a scalar product on U , one makes the residual R = Lu− S small
in the sense :

∀k ∈ {0, 1, ....N} , (ξk, R) = 0, (4)

under the constraint that u verifies the boundary conditions.
The ξk are called the test functions.
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Standard spectral methods

The expansion functions are global orthogonal polynomials functions, like
Chebyshev and Legendre.
Depending on the choice of test functions :

Tau method

The ξk are the expansion functions. The boundary conditions are
enforced by an additional set of equations.

Collocation method

The ξk = δ (x− xk) and the boundary conditions are enforced by an
additional set of equations.

Galerkin method

The expansions and the test functions are chosen to fulfill the boundary
conditions.
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Optimal methods

Definition :

A numerical method is said to be optimal iff the resolution of the
equation does not introduce an error greater than the one already done
by interpoling the exact solution.

uexact is the exact solution.

INuexact is the interpolant of the exact solution.

unum. is the numerical solution.

The method is optimal iff maxΛ (|uexact − INuexact|) and
maxΛ (|uexact − unum.|) have the same behavior when N →∞.
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ONE-DOMAIN METHODS
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Matrix representation of L

The action of L on u can be given by a matrix Lij

If u =
N∑

k=0

ũkTk then

Lu =
N∑

i=0

N∑
j=0

Lij ũjTi

Lij is obtained by knowing the basis operation on the expansion basis.
The kth column is the coefficients of LTk.
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Example of elementary operations with Chebyshev

If f =
∞∑

n=0

anTn (x) then Hf =
∞∑

n=0

bnTn (x)

H is the multiplication by x

bn =
1

2
((1 + δ0n−1) an−1 + an+1) with n ≥ 1

H is the derivation

bn =
2

(1 + δ0n)

∞∑
p=n+1,p+n odd

pap

H is the second derivation

bn =
1

(1 + δ0n)

∞∑
p=n+2,p+n even

p
(
p2 − n2

)
ap
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Tau method

The test functions are the Tk

(Tk|R) = 0 implies :
N∑

j=0

Lkj ũj = s̃k (N + 1 equations).

The s̃k are the coefficients of the interpolant of the source.

Boundary conditions

u (x = −1) = 0 =⇒
N∑

j=0

(−1)j
ũj = 0

u (x = +1) = 0 =⇒
N∑

j=0

ũj = 0

One considers the N − 1 first residual equations and the 2 boundary
conditions. The unknowns are the ũk.
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Collocation method

The test functions are the δk = δ (x− xk)

(δn|R) = 0 implies that : Lu (xn) = s (xn) (N + 1 equations).

N∑
i=0

N∑
j=0

ũjLijTi (xn) = s (xn) ∀n ∈ [0, N ]

Boundary conditions

Like for the Tau-method they are enforced by two additional
equations.

One has to relax the residual conditions in x0 and xN .
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Galerkin method : choice of basis

We need a set of functions that

are easily given in terms of basis functions.

fulfill the boundary conditions.

Example

If one wants u (−1) = 0 and u (1) = 0, one can choose :

G2k (x) = T2k+2 (x)− T0 (x)

G2k+1 (x) = T2k+3 (x)− T1 (x)

Let us note that only N − 1 functions Gi must be considered to maintain
the same order of approximation (general feature).
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Transformation matrix

Definition

The Gi are given in terms of the Ti by a transformation matrix M
M is a matrix of size N + 1×N − 1.

Gi =
N∑

j=0

MjiTj ∀i ≤ N − 2 (5)

Example

Mij =


-1 0 -1
0 -1 0
1 0 0
0 1 0
0 0 1


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The Galerkin system (1)

Expressing the equations(Gn|R)

u is expanded on the Galerkin basis.

u =
N−2∑
i=0

ũG
i Gi (x) . (6)

The expression of Lu is obtained in terms of Ti via Mij and Lij .

(Gn|Lu) is computed by using, once again Mij

The source is NOT expanded in terms of Gi but by the Ti.

(Gn|S) is obtained by using Mij

This is N − 1 equations.
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The Galerkin system (2)

(Gn|R) = 0 ∀n ≤ N − 2

N−2∑
k=0

ũG
k

N∑
i=0

N∑
j=0

MinMjkLij (Ti|Ti) =
N∑

i=0

Mins̃i (Ti|Ti) , ∀n ≤ N − 2

(7)

The N − 1 unknowns are the coefficients ũG
n .

The transformation matrix M is then used to get :

u (x) =
N∑

k=0

(
N−2∑
n=0

MknũG
n

)
Tk
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MULTI-DOMAIN METHODS
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Multi-domain decomposition

Motivations

We have seen that discontinuous functions (or not C∞ functions)
are not well represented by spectral expansion.

However, in physics, we may be interested in such fields (for example
the surface of a strange star can produce discontinuities).

We also may need to use different functions in various regions of
space.

In order to cope with that, we need several domains in such a way
that the discontinuities lies at the boundaries.

By doing so, the functions are C∞ in every domain, preserving the
exponential convergence.
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Multi-domain setting

x =
1

2
(x1 − 1)

x =
1

2
(x2 + 1)

Spectral decomposition with respect to xi

Domain 1 : u (x < 0) =
N∑

i=0

ũ1
iTi (x1 (x))

Domain 2 : u (x > 0) =
N∑

i=0

ũ2
iTi (x2 (x))

Same thing for the source.

Note that
d

dx
= 2

d

dxi
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A multi-domain Tau method

Domain 1

(Tk|R) = 0 =⇒
N∑

j=0

Lkj ũ
1
j = s̃1

k

N + 1 equations and we relax the last two. (N-1 equations)

Same thing in domain 2.

Additional equations :

the 2 boundary conditions.

matching of the solution at x = 0.

matching of the first derivative at x = 0.

A complete system

2N-2 equations for residuals and 4 for the matching and boundary
conditions.

2N+2 unknowns, the ũ1
i and ũ2

i
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Homogeneous solution method

This method is the closest to the standard analytical way of solving linear
differential equations.

Principle

find a particular solution in each domain.

compute the homogeneous solutions in each domain.

determine the coefficients of the homogeneous solutions by
imposing :

the boundary conditions.
the matching of the solution at the boundary.
the matching of the first derivative.
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Homogeneous solutions

In general 2 in each domain and they can be known either :

by numerically solving Lu = 0.

or, most of the time, they can be found analytically.

The number of homogeneous solutions can be modified for regularity
reasons.
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Particular solution

In each domain, we can seek a particular solution g by a Tau residual
method.

(Tk|R) = 0 =⇒
N∑

j=0

Lkj g̃j = s̃k

However, due to the presence of homogeneous solutions, the matrix Lij

is degenerate.
More precisely, Lij is more and more degenerate as N →∞, the
homogeneous solution being better described by their interpolant.

N∑
j=0

Lkj h̃j → 0 when N →∞
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The non-degenerate operator

A non-degenerate operator O can be obtained by removing :

the m first columns of Lij (imposes that the first m coefficients of g
are 0).

the m last lines of Lij (relaxes the last m equations for the residual).

m is the number of homogeneous solutions (typically m = 2).

The matrix O is, generally, non-degenerate, and can be inverted.(true as
long as the m first coefficients of the HS are not 0...)
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Matching system

Example

2 domains.

2 homogeneous solutions in each of them.

The system (4 equations)

two boundary conditions (left and right).

matching of the solution across the boundary.

matching of the first radial derivative.

The unknowns are the coefficients of the homogeneous solutions (4 in
this particular case).
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Variational formulation

Warning : this method is easily applicable only when using Legendre
polynomials because it requires that w (x) = 1.
We will write Lu as Lu ≡ −u′′ + Fu, F being a first order differential
operator on u.

Starting point

weighted residual equation :

(ξ|R) = 0 =⇒
∫

ξ (−u′′ + Fu) dx =

∫
ξsdx

Integration by part :

[−ξu′] +

∫
ξ′u′dx +

∫
ξFudx =

∫
ξsdx

Test functions

As for the collocation method : ξ = δk = δ (x− xk) for all points but
x = −1 and x = 1.
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Various operators

Derivation in configuration space

g′ (xk) =
N∑

j=0

Dkjg (xj) (8)

First order operator F in the configuration space

Fu (xk) =
N∑

j=0

Fkju (xj) (9)
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Expression of the integrals

[−ξu′] +
∫

ξ′u′dx +
∫

ξFudx =
∫

ξsdx∫
ξnsdx =

N∑
i=0

ξn (xi) s (xi)wi = s (xn)wn

∫
ξnFudx =

N∑
i=0

ξn (xi) Fu (xi)wi =

 N∑
j=0

Fnju (xj)

wn

∫
ξ′nu′dx =

N∑
i=0

ξ′n (xi)u′ (xi) wi =
N∑

i=0

N∑
j=0

DijDinwiu (xj)
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Equations for the points inside the domains

[−ξu′] = 0 so that, in each domain :

N∑
i=0

N∑
j=0

DijDinwiu (xj) +

 N∑
j=0

Fnju (xj)

wn = s (xn) wn

In each domain : 0 < n < N , i.e. 2N-2 equations.
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Equations at the boundary

In the domain 1 :

n = N and [−ξu′] = −u′1 (x1 = 1;x = 0)

u′1 (x1 = 1) =
N∑

i=0

N∑
j=0

DijDiNwiu
1 (xj) +

 N∑
j=0

FNju
1 (xj)

wN

−s1 (xN ) wN

In the domain 2 :

n = 0 and [−ξu′] = u′2 (x2 = −1;x = 0)

u′2 (x2 = −1) = −
N∑

i=0

N∑
j=0

DijDi0wiu
2 (xj)−

 N∑
j=0

F0ju
2 (xj)

w0

+s2 (x0)w0
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Matching equation

u′1 (x1 = 1; x = 0) = u′2 (x2 = −1;x = 0) =⇒
N∑

i=0

N∑
j=0

DijDiNwiu
1 (xj) +

 N∑
j=0

FNju
1 (xj)

wN

+
N∑

i=0

N∑
j=0

DijDi0wiu
2 (xj) +

 N∑
j=0

F0ju
2 (xj)

w0

= s1 (xN ) wN + s2 (x0) w0

Additional equations

Boundary condition at x = −1 : u1 (x0) = 0

Boundary condition at x = 1 : u2 (xN ) = 0

Matching at x = 0 : u1 (xN ) = u2 (x0)

We solve for the unknowns ui (xj).
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Why Legendre ?

Suppose we use Chebyshev : w (x) =
1√

1− x2
.∫

−u′′fwdx = [−u′fw] +

∫
u′f ′w′dx

Difficult (if not impossible) to compute u′ at the boundary, given that w
is divergent there =⇒ difficult to impose the weak matching condition.
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SOME LORENE OBJECTS
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Array of double : the Tbl

Constructor : Tbl::Tbl(int ... ). The number of dimension is 1,
2 or 3.

Allocation : Tbl::set etat qcq()

Allocation to zero : Tbl::annule hard()

Reading of an element : Tbl::operator()(int ...)

Writing of an element : Tbl::set(int...)

Output : operator cout
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Matrix : Matrice

Constructor : Matrice::Matrice(int, int).

Allocation : Matrice::set etat qcq()

Allocation to zero : Matrice::annule hard()

Reading of an element : Matrice::operator()(int, int)

Writing of an element : Matrice::set(int, int)

Output : operator cout

Allocation of the banded form : Matrice::set(int up, int
down)

Computes the LU decomposition : Matrice::set lu()

Inversion of a system AX = Y : Tbl Matrice::inverse(Tbl y).
The LU decomposition must be done before.
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Tuesday directory

What it provides

Routines to computes collocation points, weights, and coefficients
(using Tbl).

For Chebyshev (cheby.h and cheby.C)

For Legendre (leg.h and leg.C)

The action of the second derivative in Chebyshev space (solver.C)

What should I do ?

Go to Lorene/School05 directory.

type cvs update -d to get todays files.

compile solver (using make).

run it ... (disappointing isnt’it ?).

write what is missing.
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