One dimensional PDE

Philippe Grandclément

Laboratoire de I'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
F-92195 Meudon, France
philippe.grandclement@obspm.fr

Collaborators
Silvano Bonazzola, Eric Gourgoulhon, Jérôme Novak

November 14-18, 2005

Outline

(1) Introduction
(2) One-domain methods
(3) Multi-domain methods
(4) Some LORENE objects

INTRODUCTION

Type of problems

We will consider a differential equation :

$$
\begin{array}{cl}
L u(x)=S(x) & x \in U \\
B u(y)=0 & y \in \partial U \tag{2}
\end{array}
$$

where L are B are linear differential operators.
In the following, we will only consider one-dimensional cases $U=[-1 ; 1]$. We will also assume that u can be expanded on some functions :

$$
\begin{equation*}
\tilde{u}(x)=\sum_{n=0}^{N} \tilde{u}_{n} \phi_{n}(x) \tag{3}
\end{equation*}
$$

Depending on the choice of expansion functions ϕ_{k}, one can generate :

- finite difference methods.
- finite element method.
- spectral methods.

The weighted residual method

Given a scalar product on U, one makes the residual $R=L u-S$ small in the sense :

$$
\begin{equation*}
\forall k \in\{0,1, \ldots . N\}, \quad\left(\xi_{k}, R\right)=0, \tag{4}
\end{equation*}
$$

under the constraint that u verifies the boundary conditions.
The ξ_{k} are called the test functions.

Standard spectral methods

The expansion functions are global orthogonal polynomials functions, like Chebyshev and Legendre.
Depending on the choice of test functions :
Tau method
The ξ_{k} are the expansion functions. The boundary conditions are enforced by an additional set of equations.

Collocation method

The $\xi_{k}=\delta\left(x-x_{k}\right)$ and the boundary conditions are enforced by an additional set of equations.

Galerkin method

The expansions and the test functions are chosen to fulfill the boundary conditions.

Optimal methods

Definition

A numerical method is said to be optimal iff the resolution of the equation does not introduce an error greater than the one already done by interpoling the exact solution.

- $u_{\text {exact }}$ is the exact solution.
- $I_{N} u_{\text {exact }}$ is the interpolant of the exact solution.
- $u_{\text {num. }}$ is the numerical solution.

The method is optimal iff $\max _{\Lambda}\left(\left|u_{\text {exact }}-I_{N} u_{\text {exact }}\right|\right)$ and $\max _{\Lambda}\left(\left|u_{\text {exact }}-u_{\text {num. }}\right|\right)$ have the same behavior when $N \rightarrow \infty$.

ONE-DOMAIN METHODS

Matrix representation of L

The action of L on u can be given by a matrix $L_{i j}$
If $u=\sum_{k=0}^{N} \tilde{u}_{k} T_{k}$ then

$$
L u=\sum_{i=0}^{N} \sum_{j=0}^{N} L_{i j} \tilde{u}_{j} T_{i}
$$

$L_{i j}$ is obtained by knowing the basis operation on the expansion basis. The $k^{\text {th }}$ column is the coefficients of $L T_{k}$.

Example of elementary operations with Chebyshev

If $f=\sum_{n=0}^{\infty} a_{n} T_{n}(x)$ then $H f=\sum_{n=0}^{\infty} b_{n} T_{n}(x)$
H is the multiplication by x

$$
b_{n}=\frac{1}{2}\left(\left(1+\delta_{0 n-1}\right) a_{n-1}+a_{n+1}\right) \text { with } n \geq 1
$$

H is the derivation

$$
b_{n}=\frac{2}{\left(1+\delta_{0 n}\right)} \sum_{p=n+1, p+n \text { odd }}^{\infty} p a_{p}
$$

H is the second derivation

$$
b_{n}=\frac{1}{\left(1+\delta_{0 n}\right)} \sum_{p=n+2, p+n \text { even }}^{\infty} p\left(p^{2}-n^{2}\right) a_{p}
$$

Tau method

The test functions are the T_{k}
$\left(T_{k} \mid R\right)=0$ implies : $\sum_{j=0}^{N} L_{k j} \tilde{u}_{j}=\tilde{s}_{k}(N+1$ equations $)$.
The \tilde{s}_{k} are the coefficients of the interpolant of the source.

Boundary conditions

- $u(x=-1)=0 \Longrightarrow \sum_{j=0}^{N}(-1)^{j} \tilde{u}_{j}=0$
- $u(x=+1)=0 \Longrightarrow \sum_{j=0}^{N} \tilde{u}_{j}=0$

One considers the $N-1$ first residual equations and the 2 boundary conditions. The unknowns are the \tilde{u}_{k}.

Collocation method

The test functions are the $\delta_{k}=\delta\left(x-x_{k}\right)$
$\left(\delta_{n} \mid R\right)=0$ implies that : $L u\left(x_{n}\right)=s\left(x_{n}\right)(N+1$ equations $)$.

$$
\sum_{i=0}^{N} \sum_{j=0}^{N} \tilde{u}_{j} L_{i j} T_{i}\left(x_{n}\right)=s\left(x_{n}\right) \quad \forall n \in[0, N]
$$

Boundary conditions

- Like for the Tau-method they are enforced by two additional equations.
- One has to relax the residual conditions in x_{0} and x_{N}.

Galerkin method: choice of basis

We need a set of functions that

- are easily given in terms of basis functions.
- fulfill the boundary conditions.

Example

If one wants $u(-1)=0$ and $u(1)=0$, one can choose :

- $G_{2 k}(x)=T_{2 k+2}(x)-T_{0}(x)$
- $G_{2 k+1}(x)=T_{2 k+3}(x)-T_{1}(x)$

Let us note that only $N-1$ functions G_{i} must be considered to maintain the same order of approximation (general feature).

Transformation matrix

Definition

The G_{i} are given in terms of the T_{i} by a transformation matrix M M is a matrix of size $N+1 \times N-1$.

$$
\begin{equation*}
G_{i}=\sum_{j=0}^{N} M_{j i} T_{j} \quad \forall i \leq N-2 \tag{5}
\end{equation*}
$$

Example

$$
M_{i j}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The Galerkin system (1)

Expressing the equations $\left(G_{n} \mid R\right)$

- u is expanded on the Galerkin basis.

$$
\begin{equation*}
u=\sum_{i=0}^{N-2} \tilde{u}_{i}^{G} G_{i}(x) \tag{6}
\end{equation*}
$$

- The expression of $L u$ is obtained in terms of T_{i} via $M_{i j}$ and $L_{i j}$.
- $\left(G_{n} \mid L u\right)$ is computed by using, once again $M_{i j}$
- The source is NOT expanded in terms of G_{i} but by the T_{i}.
- $\left(G_{n} \mid S\right)$ is obtained by using $M_{i j}$
- This is $N-1$ equations.

The Galerkin system (2)

$\left(G_{n} \mid R\right)=0 \quad \forall n \leq N-2$

$$
\begin{equation*}
\sum_{k=0}^{N-2} \tilde{u}_{k}^{G} \sum_{i=0}^{N} \sum_{j=0}^{N} M_{i n} M_{j k} L_{i j}\left(T_{i} \mid T_{i}\right)=\sum_{i=0}^{N} M_{i n} \tilde{s}_{i}\left(T_{i} \mid T_{i}\right), \quad \forall n \leq N-2 \tag{7}
\end{equation*}
$$

The $N-1$ unknowns are the coefficients \tilde{u}_{n}^{G}.
The transformation matrix M is then used to get :

$$
u(x)=\sum_{k=0}^{N}\left(\sum_{n=0}^{N-2} M_{k n} \tilde{u}_{n}^{G}\right) T_{k}
$$

MULTI-DOMAIN METHODS

Multi-domain decomposition

Motivations

- We have seen that discontinuous functions (or not \mathcal{C}^{∞} functions) are not well represented by spectral expansion.
- However, in physics, we may be interested in such fields (for example the surface of a strange star can produce discontinuities).
- We also may need to use different functions in various regions of space.
- In order to cope with that, we need several domains in such a way that the discontinuities lies at the boundaries.
- By doing so, the functions are \mathcal{C}^{∞} in every domain, preserving the exponential convergence.

Multi-domain setting

- $x=\frac{1}{2}\left(x_{1}-1\right)$
- $x=\frac{1}{2}\left(x_{2}+1\right)$

Spectral decomposition with respect to x_{i}

- Domain 1:u(x<0)=$\sum_{i=0}^{N} \tilde{u}_{i}^{1} T_{i}\left(x_{1}(x)\right)$
- Domain $2: u(x>0)=\sum_{i=0}^{N} \tilde{u}_{i}^{2} T_{i}\left(x_{2}(x)\right)$
- Same thing for the source.

Note that $\frac{\mathrm{d}}{d x}=2 \frac{\mathrm{~d}}{d x_{i}}$

A multi-domain Tau method

Domain 1

- $\left(T_{k} \mid R\right)=0 \Longrightarrow \sum_{j=0}^{N} L_{k j} \tilde{u}_{j}^{1}=\tilde{s}_{k}^{1}$
- $N+1$ equations and we relax the last two. ($\mathrm{N}-1$ equations)
- Same thing in domain 2.

Additional equations

- the 2 boundary conditions.
- matching of the solution at $x=0$.
- matching of the first derivative at $x=0$.

A complete system

- $2 \mathrm{~N}-2$ equations for residuals and 4 for the matching and boundary conditions.
- $2 \mathrm{~N}+2$ unknowns, the \tilde{u}_{i}^{1} and \tilde{u}_{i}^{2}

Homogeneous solution method

This method is the closest to the standard analytical way of solving linear differential equations.

Principle

- find a particular solution in each domain.
- compute the homogeneous solutions in each domain.
- determine the coefficients of the homogeneous solutions by imposing :
- the boundary conditions.
- the matching of the solution at the boundary.
- the matching of the first derivative.

Homogeneous solutions

In general 2 in each domain and they can be known either :

- by numerically solving $L u=0$.
- or, most of the time, they can be found analytically.

The number of homogeneous solutions can be modified for regularity reasons.

Particular solution

In each domain, we can seek a particular solution g by a Tau residual method.

$$
\left(T_{k} \mid R\right)=0 \Longrightarrow \sum_{j=0}^{N} L_{k j} \tilde{g}_{j}=\tilde{s}_{k}
$$

However, due to the presence of homogeneous solutions, the matrix $L_{i j}$ is degenerate.
More precisely, $L_{i j}$ is more and more degenerate as $N \rightarrow \infty$, the homogeneous solution being better described by their interpolant.

$$
\sum_{j=0}^{N} L_{k j} \tilde{h}_{j} \rightarrow 0 \text { when } N \rightarrow \infty
$$

The non-degenerate operator

A non-degenerate operator O can be obtained by removing :

- the m first columns of $L_{i j}$ (imposes that the first m coefficients of g are 0).
- the m last lines of $L_{i j}$ (relaxes the last m equations for the residual).
- m is the number of homogeneous solutions (typically $m=2$).

The matrix O is, generally, non-degenerate, and can be inverted.(true as long as the m first coefficients of the HS are not $0 \ldots$)

Matching system

Example

- 2 domains.
- 2 homogeneous solutions in each of them.

The system (4 equations)

- two boundary conditions (left and right).
- matching of the solution across the boundary.
- matching of the first radial derivative.

The unknowns are the coefficients of the homogeneous solutions (4 in this particular case).

Variational formulation

Warning : this method is easily applicable only when using Legendre polynomials because it requires that $w(x)=1$.
We will write $L u$ as $L u \equiv-u^{\prime \prime}+F u, F$ being a first order differential operator on u.

Starting point

- weighted residual equation :

$$
(\xi \mid R)=0 \Longrightarrow \int \xi\left(-u^{\prime \prime}+F u\right) \mathrm{d} x=\int \xi s \mathrm{~d} x
$$

- Integration by part :

$$
\left[-\xi u^{\prime}\right]+\int \xi^{\prime} u^{\prime} \mathrm{d} x+\int \xi F u \mathrm{~d} x=\int \xi s \mathrm{~d} x
$$

Test functions

As for the collocation method : $\xi=\delta_{k}=\delta\left(x-x_{k}\right)$ for all points but $x=-1$ and $x=1$.

Various operators

Derivation in configuration space

$$
\begin{equation*}
g^{\prime}\left(x_{k}\right)=\sum_{j=0}^{N} D_{k j} g\left(x_{j}\right) \tag{8}
\end{equation*}
$$

First order operator F in the configuration space

$$
\begin{equation*}
F u\left(x_{k}\right)=\sum_{j=0}^{N} F_{k j} u\left(x_{j}\right) \tag{9}
\end{equation*}
$$

Expression of the integrals

$$
\begin{aligned}
& {\left[-\xi u^{\prime}\right]+\int \xi^{\prime} u^{\prime} \mathrm{d} x+\int \xi F u \mathrm{~d} x=\int \xi s \mathrm{~d} x} \\
& \bullet \int \xi_{n} s \mathrm{~d} x=\sum_{i=0}^{N} \xi_{n}\left(x_{i}\right) s\left(x_{i}\right) w_{i}=s\left(x_{n}\right) w_{n} \\
& \bullet \int \xi_{n} F u \mathrm{~d} x=\sum_{i=0}^{N} \xi_{n}\left(x_{i}\right) F u\left(x_{i}\right) w_{i}=\left[\sum_{j=0}^{N} F_{n j} u\left(x_{j}\right)\right] w_{n} \\
& \bullet \int \xi_{n}^{\prime} u^{\prime} \mathrm{d} x=\sum_{i=0}^{N} \xi_{n}^{\prime}\left(x_{i}\right) u^{\prime}\left(x_{i}\right) w_{i}=\sum_{i=0}^{N} \sum_{j=0}^{N} D_{i j} D_{i n} w_{i} u\left(x_{j}\right)
\end{aligned}
$$

Equations for the points inside the domains

$\left[-\xi u^{\prime}\right]=0$ so that, in each domain :

$$
\sum_{i=0}^{N} \sum_{j=0}^{N} D_{i j} D_{i n} w_{i} u\left(x_{j}\right)+\left[\sum_{j=0}^{N} F_{n j} u\left(x_{j}\right)\right] w_{n}=s\left(x_{n}\right) w_{n}
$$

In each domain : $0<n<N$, i.e. $2 N-2$ equations.

Equations at the boundary

In the domain 1:

$$
\begin{aligned}
& n=N \text { and }\left[-\xi u^{\prime}\right]=-u^{\prime 1}\left(x_{1}=1 ; x=0\right) \\
& \begin{aligned}
u^{\prime 1}\left(x_{1}=1\right)= & \sum_{i=0}^{N} \sum_{j=0}^{N} D_{i j} D_{i N} w_{i} u^{1}\left(x_{j}\right)+\left[\sum_{j=0}^{N} F_{N j} u^{1}\left(x_{j}\right)\right] w_{N} \\
& -s^{1}\left(x_{N}\right) w_{N}
\end{aligned}
\end{aligned}
$$

In the domain 2:

$$
n=0 \text { and }\left[-\xi u^{\prime}\right]=u^{\prime 2}\left(x_{2}=-1 ; x=0\right)
$$

$$
\begin{aligned}
u^{\prime 2}\left(x_{2}=-1\right)= & -\sum_{i=0}^{N} \sum_{j=0}^{N} D_{i j} D_{i 0} w_{i} u^{2}\left(x_{j}\right)-\left[\sum_{j=0}^{N} F_{0 j} u^{2}\left(x_{j}\right)\right] w_{0} \\
& +s^{2}\left(x_{0}\right) w_{0}
\end{aligned}
$$

Matching equation

$$
\begin{aligned}
& u^{\prime 1}\left(x_{1}=1 ; x=0\right)=u^{\prime 2}\left(x_{2}=-1 ; x=0\right) \Longrightarrow \\
& \sum_{i=0}^{N} \sum_{j=0}^{N} D_{i j} D_{i N} w_{i} u^{1}\left(x_{j}\right)+\left[\sum_{j=0}^{N} F_{N j} u^{1}\left(x_{j}\right)\right] w_{N} \\
& +\sum_{i=0}^{N} \sum_{j=0}^{N} D_{i j} D_{i 0} w_{i} u^{2}\left(x_{j}\right)+\left[\sum_{j=0}^{N} F_{0 j} u^{2}\left(x_{j}\right)\right] w_{0} \\
& =s^{1}\left(x_{N}\right) w_{N}+s^{2}\left(x_{0}\right) w_{0}
\end{aligned}
$$

Additional equations

- Boundary condition at $x=-1: u^{1}\left(x_{0}\right)=0$
- Boundary condition at $x=1: u^{2}\left(x_{N}\right)=0$
- Matching at $x=0: u^{1}\left(x_{N}\right)=u^{2}\left(x_{0}\right)$

We solve for the unknowns $u^{i}\left(x_{j}\right)$.

Why Legendre?

Suppose we use Chebyshev : $w(x)=\frac{1}{\sqrt{1-x^{2}}}$.

$$
\int-u^{\prime \prime} f w \mathrm{~d} x=\left[-u^{\prime} f w\right]+\int u^{\prime} f^{\prime} w^{\prime} \mathrm{d} x
$$

Difficult (if not impossible) to compute u^{\prime} at the boundary, given that w is divergent there \Longrightarrow difficult to impose the weak matching condition.

SOME LORENE OBJECTS

Array of double : the Tbl

- Constructor: Tbl::Tbl (int ...). The number of dimension is 1 , 2 or 3.
- Allocation : Tbl::set_etat_qcq()
- Allocation to zero : Tbl::annule_hard()
- Reading of an element: Tbl::operator()(int ...)
- Writing of an element:Tbl::set(int...)
- Output : operator cout

Matrix : Matrice

- Constructor : Matrice: :Matrice(int, int).
- Allocation : Matrice::set_etat_qcq()
- Allocation to zero : Matrice::annule_hard()
- Reading of an element : Matrice::operator() (int, int)
- Writing of an element : Matrice::set(int, int)
- Output : operator cout
- Allocation of the banded form : Matrice::set(int up, int down)
- Computes the $L U$ decomposition : Matrice::set_lu()
- Inversion of a system $A X=Y$: Tbl Matrice::inverse(Tbl y).

The $L U$ decomposition must be done before.

Tuesday directory

What it provides

- Routines to computes collocation points, weights, and coefficients (using Tbl).
- For Chebyshev (cheby.h and cheby.C)
- For Legendre (leg.h and leg.C)
- The action of the second derivative in Chebyshev space (solver.C)

What should I do?

- Go to Lorene/School05 directory.
- type cvs update -d to get todays files.
- compile solver (using make).
- run it ... (disappointing isnt'it ?).
- write what is missing.

