▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

One dimensional PDE

Philippe Grandclément

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

Collaborators Silvano Bonazzola, Eric Gourgoulhon, Jérôme Novak

November 14-18, 2005

Outline

3 Multi-domain methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

INTRODUCTION

Type of problems

We will consider a differential equation :

 $Lu(x) = S(x) \qquad x \in U$ $Bu(y) = 0 \qquad y \in \partial U$ (1)
(2)

where L are B are linear differential operators. In the following, we will only consider one-dimensional cases U = [-1; 1]. We will also assume that u can be expanded on some functions :

$$\tilde{u}(x) = \sum_{n=0}^{N} \tilde{u}_n \phi_n(x).$$
(3)

Depending on the choice of expansion functions ϕ_k , one can generate :

- finite difference methods.
- finite element method.
- spectral methods.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The weighted residual method

Given a scalar product on U, one makes the residual R=Lu-S small in the sense :

$$\forall k \in \{0, 1, ..., N\}, \quad (\xi_k, R) = 0,$$
 (4)

under the constraint that u verifies the boundary conditions. The ξ_k are called the test functions.

Standard spectral methods

The expansion functions are global orthogonal polynomials functions, like Chebyshev and Legendre.

Depending on the choice of test functions :

Tau method

The ξ_k are the expansion functions. The boundary conditions are enforced by an additional set of equations.

Collocation method

The $\xi_k = \delta(x - x_k)$ and the boundary conditions are enforced by an additional set of equations.

Galerkin method

The expansions and the test functions are chosen to fulfill the boundary conditions.

Multi-domain methods

Some LORENE objects

Optimal methods

Definition :

A numerical method is said to be optimal iff the resolution of the equation does not introduce an error greater than the one already done by interpoling the exact solution.

- u_{exact} is the exact solution.
- $I_N u_{\text{exact}}$ is the interpolant of the exact solution.
- *u*_{num}. is the numerical solution.

The method is optimal iff $\max_{\Lambda} (|u_{\text{exact}} - I_N u_{\text{exact}}|)$ and $\max_{\Lambda} (|u_{\text{exact}} - u_{\text{num.}}|)$ have the same behavior when $N \to \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

ONE-DOMAIN METHODS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Matrix representation of L

The action of L on u can be given by a matrix L_{ij}

If
$$u = \sum_{k=0}^N \tilde{u}_k T_k$$
 then

$$Lu = \sum_{i=0}^{N} \sum_{j=0}^{N} L_{ij} \tilde{u}_j T_i$$

 L_{ij} is obtained by knowing the basis operation on the expansion basis. The k^{th} column is the coefficients of LT_k .

Example of elementary operations with Chebyshev

If
$$f = \sum_{n=0}^{\infty} a_n T_n(x)$$
 then $Hf = \sum_{n=0}^{\infty} b_n T_n(x)$

H is the multiplication by x

$$b_n = rac{1}{2} \left(\left(1 + \delta_{0n-1}
ight) a_{n-1} + a_{n+1}
ight)$$
 with $n \geq 1$

H is the derivation

$$b_n = rac{2}{\left(1+\delta_{0n}
ight)}\sum_{p=n+1,p+n ext{ odd}}^{\infty} pa_p$$

H is the second derivation

$$b_n = rac{1}{\left(1+\delta_{0n}
ight)}\sum_{p=n+2,p+n ext{ even}}^{\infty} p\left(p^2-n^2
ight)a_p$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへ⊙

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tau method

The test functions are the T_k

$$(T_k|R) = 0$$
 implies : $\sum_{j=0}^{N} L_{kj} \tilde{u}_j = \tilde{s}_k (N+1 \text{ equations}).$
The \tilde{s}_k are the coefficients of the interpolant of the source

Boundary conditions

•
$$u(x = -1) = 0 \Longrightarrow \sum_{j=0}^{N} (-1)^{j} \tilde{u}_{j} = 0$$

• $u(x = +1) = 0 \Longrightarrow \sum_{j=0}^{N} \tilde{u}_{j} = 0$

One considers the N-1 first residual equations and the 2 boundary conditions. The unknowns are the \tilde{u}_k .

Collocation method

The test functions are the $\delta_k = \delta (x - x_k)$

 $(\delta_n | R) = 0$ implies that : $Lu(x_n) = s(x_n) (N + 1$ equations).

$$\sum_{i=0}^{N}\sum_{j=0}^{N}\tilde{u}_{j}L_{ij}T_{i}\left(x_{n}\right)=s\left(x_{n}\right)\quad\forall n\in\left[0,N\right]$$

Boundary conditions

- Like for the Tau-method they are enforced by two additional equations.
- One has to relax the residual conditions in x_0 and x_N .

Galerkin method : choice of basis

We need a set of functions that

- are easily given in terms of basis functions.
- fulfill the boundary conditions.

Example

If one wants u(-1) = 0 and u(1) = 0, one can choose :

•
$$G_{2k}(x) = T_{2k+2}(x) - T_0(x)$$

•
$$G_{2k+1}(x) = T_{2k+3}(x) - T_1(x)$$

Let us note that only N-1 functions G_i must be considered to maintain the same order of approximation (general feature).

Transformation matrix

Definition

The G_i are given in terms of the T_i by a transformation matrix MM is a matrix of size $N + 1 \times N - 1$.

$$G_i = \sum_{j=0}^{N} M_{ji} T_j \quad \forall i \le N-2$$
(5)

Example

$$M_{ij} = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(日) (雪) (日) (日) (日)

The Galerkin system (1)

Expressing the equations $(G_n|R)$

• u is expanded on the Galerkin basis.

$$u = \sum_{i=0}^{N-2} \tilde{u}_i^G G_i(x) \,. \tag{6}$$

- The expression of Lu is obtained in terms of T_i via M_{ij} and L_{ij} .
- $(G_n|Lu)$ is computed by using, once again M_{ij}
- The source is NOT expanded in terms of G_i but by the T_i .
- $(G_n|S)$ is obtained by using M_{ij}
- This is N-1 equations.

The Galerkin system (2)

$(G_n|R) = 0 \quad \forall n \le N-2$

$$\sum_{k=0}^{N-2} \tilde{u}_k^G \sum_{i=0}^N \sum_{j=0}^N M_{in} M_{jk} L_{ij} \left(T_i | T_i \right) = \sum_{i=0}^N M_{in} \tilde{s}_i \left(T_i | T_i \right), \quad \forall n \le N-2$$
(7)

The N-1 unknowns are the coefficients \tilde{u}_n^G . The transformation matrix M is then used to get :

$$u(x) = \sum_{k=0}^{N} \left(\sum_{n=0}^{N-2} M_{kn} \tilde{u}_n^G \right) T_k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

MULTI-DOMAIN METHODS

Multi-domain decomposition

Motivations

- We have seen that discontinuous functions (or not C^{∞} functions) are not well represented by spectral expansion.
- However, in physics, we may be interested in such fields (for example the surface of a strange star can produce discontinuities).
- We also may need to use different functions in various regions of space.
- In order to cope with that, we need several domains in such a way that the discontinuities lies at the boundaries.
- By doing so, the functions are \mathcal{C}^∞ in every domain, preserving the exponential convergence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Multi-domain setting

Spectral decomposition with respect to x_i

- Domain 1 : $u(x < 0) = \sum_{i=0}^{N} \tilde{u}_{i}^{1} T_{i}(x_{1}(x))$
- Domain 2 : $u(x > 0) = \sum_{i=0}^{N} \tilde{u}_{i}^{2} T_{i}(x_{2}(x))$
- Same thing for the source.

Note that $\frac{d}{dx} = 2\frac{d}{dx_i}$

A multi-domain Tau method

Domain 1

•
$$(T_k|R) = 0 \Longrightarrow \sum_{j=0}^N L_{kj} \tilde{u}_j^1 = \tilde{s}_k^1$$

- N + 1 equations and we relax the last two. (N-1 equations)
- Same thing in domain 2.

Additional equations :

- the 2 boundary conditions.
- matching of the solution at x = 0.
- matching of the first derivative at x = 0.

A complete system

- 2N-2 equations for residuals and 4 for the matching and boundary conditions.
- 2N+2 unknowns, the \tilde{u}_i^1 and \tilde{u}_i^2

Homogeneous solution method

This method is the closest to the standard analytical way of solving linear differential equations.

Principle

- find a particular solution in each domain.
- compute the homogeneous solutions in each domain.
- determine the coefficients of the homogeneous solutions by imposing :
 - the boundary conditions.
 - the matching of the solution at the boundary.
 - the matching of the first derivative.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Homogeneous solutions

In general 2 in each domain and they can be known either :

- by numerically solving Lu = 0.
- or, most of the time, they can be found analytically.

The number of homogeneous solutions can be modified for regularity reasons.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Particular solution

In each domain, we can seek a particular solution g by a Tau residual method.

$$(T_k|R) = 0 \Longrightarrow \sum_{j=0}^N L_{kj}\tilde{g}_j = \tilde{s}_k$$

However, due to the presence of homogeneous solutions, the matrix L_{ij} is degenerate.

More precisely, L_{ij} is more and more degenerate as $N \to \infty$, the homogeneous solution being better described by their interpolant.

$$\sum_{j=0}^N L_{kj} ilde{h}_j o 0$$
 when $N o \infty$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The non-degenerate operator

A non-degenerate operator O can be obtained by removing :

- the m first columns of L_{ij} (imposes that the first m coefficients of g are 0).
- the m last lines of L_{ij} (relaxes the last m equations for the residual).
- m is the number of homogeneous solutions (typically m = 2).

The matrix O is, generally, non-degenerate, and can be inverted.(true as long as the m first coefficients of the HS are not 0...)

Matching system

Example

- 2 domains.
- 2 homogeneous solutions in each of them.

The system (4 equations)

- two boundary conditions (left and right).
- matching of the solution across the boundary.
- matching of the first radial derivative.

The unknowns are the coefficients of the homogeneous solutions (4 in this particular case).

Variational formulation

Warning : this method is easily applicable only when using Legendre polynomials because it requires that w(x) = 1. We will write Lu as $Lu \equiv -u'' + Fu$, F being a first order differential operator on u.

Starting point

• weighted residual equation :

$$(\xi|R) = 0 \Longrightarrow \int \xi (-u'' + Fu) \,\mathrm{d}x = \int \xi s \mathrm{d}x$$

Integration by part :

$$[-\xi u'] + \int \xi' u' dx + \int \xi F u dx = \int \xi s dx$$

Test functions

As for the collocation method : $\xi = \delta_k = \delta(x - x_k)$ for all points but x = -1 and x = 1.

Various operators

Derivation in configuration space

$$g'(x_k) = \sum_{j=0}^{N} D_{kj}g(x_j)$$
 (8)

First order operator F in the configuration space

$$Fu(x_k) = \sum_{j=0}^{N} F_{kj}u(x_j)$$
(9)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Expression of the integrals

$\int [-\xi u'] + \int \xi' u' dx + \int \xi F u dx = \int \xi s dx$

•
$$\int \xi_n s dx = \sum_{i=0}^N \xi_n(x_i) s(x_i) w_i = s(x_n) w_n$$

•
$$\int \xi_n F u dx = \sum_{i=0}^N \xi_n(x_i) F u(x_i) w_i = \left[\sum_{j=0}^N F_{nj} u(x_j)\right] w_n$$

•
$$\int \xi'_n u' dx = \sum_{i=0}^N \xi'_n(x_i) u'(x_i) w_i = \sum_{i=0}^N \sum_{j=0}^N D_{ij} D_{in} w_i u(x_j)$$

Equations for the points inside the domains

$[-\xi u'] = 0 \text{ so that, in each domain :}$ $\sum_{i=0}^{N} \sum_{j=0}^{N} D_{ij} D_{in} w_i u(x_j) + \left[\sum_{j=0}^{N} F_{nj} u(x_j)\right] w_n = s(x_n) w_n$

In each domain : 0 < n < N, i.e. 2N-2 equations.

Equations at the boundary

In the domain <u>1</u> :

$$n = N$$
 and $[-\xi u'] = -u'^1 (x_1 = 1; x = 0)$

$$u'^{1}(x_{1} = 1) = \sum_{i=0}^{N} \sum_{j=0}^{N} D_{ij} D_{iN} w_{i} u^{1}(x_{j}) + \left[\sum_{j=0}^{N} F_{Nj} u^{1}(x_{j})\right] w_{N}$$
$$-s^{1}(x_{N}) w_{N}$$

In the domain 2 :

$$n = 0$$
 and $[-\xi u'] = u'^2 (x_2 = -1; x = 0)$

$$u^{\prime 2}(x_{2} = -1) = -\sum_{i=0}^{N} \sum_{j=0}^{N} D_{ij} D_{i0} w_{i} u^{2}(x_{j}) - \left[\sum_{j=0}^{N} F_{0j} u^{2}(x_{j})\right] w_{0}$$
$$+ s^{2}(x_{0}) w_{0}$$

Matching equation

$$\begin{aligned} u'^{1}(x_{1} = 1; x = 0) &= u'^{2}(x_{2} = -1; x = 0) \Longrightarrow \\ & \sum_{i=0}^{N} \sum_{j=0}^{N} D_{ij} D_{iN} w_{i} u^{1}(x_{j}) + \left[\sum_{j=0}^{N} F_{Nj} u^{1}(x_{j}) \right] w_{N} \\ &+ \sum_{i=0}^{N} \sum_{j=0}^{N} D_{ij} D_{i0} w_{i} u^{2}(x_{j}) + \left[\sum_{j=0}^{N} F_{0j} u^{2}(x_{j}) \right] w_{0} \\ &= s^{1}(x_{N}) w_{N} + s^{2}(x_{0}) w_{0} \end{aligned}$$

Additional equations

- Boundary condition at x = -1: $u^1(x_0) = 0$
- Boundary condition at $x = 1 : u^2(x_N) = 0$
- Matching at $x = 0 : u^{1}(x_{N}) = u^{2}(x_{0})$

We solve for the unknowns $u^i(x_j)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Why Legendre?

Suppose we use Chebyshev :
$$w(x) = \frac{1}{\sqrt{1-x^2}}$$
.
 $\int -u'' f w dx = [-u' f w] + \int u' f' w' dx$

Difficult (if not impossible) to compute u' at the boundary, given that w is divergent there \implies difficult to impose the weak matching condition.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

SOME LORENE OBJECTS

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Array of double : the Tbl

- Constructor : Tbl::Tbl(int ...). The number of dimension is 1, 2 or 3.
- Allocation : Tbl::set_etat_qcq()
- Allocation to zero : Tbl::annule_hard()
- Reading of an element : Tbl::operator()(int ...)
- Writing of an element : Tbl::set(int...)
- Output : operator cout

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Matrix : Matrice

- Constructor : Matrice::Matrice(int, int).
- Allocation : Matrice::set_etat_qcq()
- Allocation to zero : Matrice::annule_hard()
- Reading of an element : Matrice::operator()(int, int)
- Writing of an element : Matrice::set(int, int)
- Output : operator cout
- Allocation of the banded form : Matrice::set(int up, int down)
- Computes the *LU* decomposition : Matrice::set_lu()
- Inversion of a system AX = Y: Tbl Matrice::inverse(Tbl y). The LU decomposition must be done before.

Tuesday directory

What it provides

- Routines to computes collocation points, weights, and coefficients (using Tbl).
- For Chebyshev (cheby.h and cheby.C)
- For Legendre (leg.h and leg.C)
- The action of the second derivative in Chebyshev space (solver.C)

What should I do?

- Go to Lorene/School05 directory.
- type cvs update -d to get todays files.
- compile solver (using make).
- run it ... (disappointing isnt'it?).
- write what is missing.