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Type of problems

We will consider a differential equation :

Lu(x) = S(x) zelU (1)
Bu(y)=0 y €U (2)
where L are B are linear differential operators.

In the following, we will only consider one-dimensional cases U = [—1; 1].
We will also assume that u can be expanded on some functions :

N
i(z) = iindn (x). (3)

n=0

Depending on the choice of expansion functions ¢, one can generate :

o finite difference methods.
@ finite element method.

@ spectral methods.
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The weighted residual method

Given a scalar product on U, one makes the residual R = Lu — S small
in the sense :

Vk € {0,1,...N}, (&, R)=0, (4)

under the constraint that u verifies the boundary conditions.
The &, are called the test functions.
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Standard spectral methods

The expansion functions are global orthogonal polynomials functions, like
Chebyshev and Legendre.
Depending on the choice of test functions :

Tau method

The & are the expansion functions. The boundary conditions are
enforced by an additional set of equations.

Collocation method

| \

The & = 6 (x — x) and the boundary conditions are enforced by an
additional set of equations.

Galerkin method

The expansions and the test functions are chosen to fulfill the boundary
conditions.
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Optimal methods

Definition :

A numerical method is said to be optimal iff the resolution of the
equation does not introduce an error greater than the one already done
by interpoling the exact solution.

@ Uexact IS the exact solution.

@ I NUexact IS the interpolant of the exact solution.

@ Upum. IS the numerical solution.

The method is optimal iff maxa (|texact — LN Uexact|) and
max (|Uexact — Unum.|) have the same behavior when N — oo.
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Matrix representation of L

The action of L on u can be given by a matrix L;;

N

If u = Zaka then
k=0

N N
Lu= Z Z Lijﬂ/jTi
i=0 j=0
L;; is obtained by knowing the basis operation on the expansion basis.
The k™ column is the coefficients of LT
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Example of elementary operations with Chebyshev

If f= Zann ) then Hf = anT

n=0 n=0

H is the multiplication by

|

bn =3 ((1 + 60n71)an71 = an+1) with n >1

H is the derivation

| I\)
\

2 oo
bn = (1 -+ don) Z Pép

p=n+1,p+n odd

H is the second derivation

oo

__ 1 2_ 2
Sk e BD DR L L

p=n-+2,p+n even
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Tau method

The test functions are the T}

N

(Tx|R) = 0 implies : Zijﬁj = 5 (N + 1 equations).
j=0

The 5j, are the coefficients of the interpolant of the source.

Boundary conditions

One considers the N — 1 first residual equations and the 2 boundary
conditions. The unknowns are the .
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Collocation method

The test functions are the 0, = d (z — x,)

(6n|R) = 0 implies that : Lu (z,) = s (x,) (N + 1 equations).

ZZﬂjLijTi (zn) = s(zn) Vne€[0,N]

Boundary conditions

@ Like for the Tau-method they are enforced by two additional
equations.

@ One has to relax the residual conditions in g and z .




Introduction One-domain methods Multi-domain methods Some LORENE objects

Galerkin method : choice of basis

We need a set of functions that

@ are easily given in terms of basis functions.

o fulfill the boundary conditions.

If one wants « (—1) = 0 and u (1) = 0, one can choose :
o Gk (7) = Tok+2 () — To (2)
o Gopt1 () = Tap3 (z) — T1 (2)

Let us note that only IV — 1 functions G; must be considered to maintain
the same order of approximation (general feature).
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Transformation matrix

The G; are given in terms of the T; by a transformation matrix M
M is a matrix of size N +1 x N — 1.

N
Gi=) M;T; Vi<N-2 (5)
j=0

cor oL
o~ o /.o
—ooo L
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The Galerkin system (1)

Expressing the equations(G,,|R)

@ u is expanded on the Galerkin basis.
N—2
u= Z a8 G; (z). (6)
i=0

@ The expression of Lu is obtained in terms of 7; via M;; and L;;.
o (Gy|Lu) is computed by using, once again M;;

@ The source is NOT expanded in terms of GG; but by the T;.

e (G,|9) is obtained by using M;,

@ This is N — 1 equations.
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The Galerkin system (2)

(Gn|R)=0 ¥Yn< N -2

N N N
g ZZMinMjkLij (G|T) = ZMzngz (G|T;), Yn<N-2
k=0 =0 j=0 =0

(7)

The N — 1 unknowns are the coefficients @< .
The transformation matrix M is then used to get :
N

N—2
u(x) = Z <Z Mknﬁg;) T,
n=0

k=0
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Multi-domain decomposition

@ We have seen that discontinuous functions (or not C* functions)
are not well represented by spectral expansion.

@ However, in physics, we may be interested in such fields (for example
the surface of a strange star can produce discontinuities).

@ We also may need to use different functions in various regions of
space.

@ In order to cope with that, we need several domains in such a way
that the discontinuities lies at the boundaries.

@ By doing so, the functions are C* in every domain, preserving the
exponential convergence.
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Multi-domain setting

Sk

Spectral decomposition with respect to x;

@ Domain 1: u(x <0)= ZulT (z1 (2

@ Domain 2 : u(x > 0) = ZuT(ajg

@ Same thing for the source.

d
d:l?i

d
Note that — =2
dx
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A multi-domain Tau method

Domain 1

|

o (Ty|R) =0=) Ly;ii; = 5
j=0
@ N + 1 equations and we relax the last two. (N-1 equations)

@ Same thing in domain 2.

|

Additional equations :

@ the 2 boundary conditions.
@ matching of the solution at x = 0.
@ matching of the first derivative at z = 0.

A complete system

@ 2N-2 equations for residuals and 4 for the matching and boundary
conditions.

@ 2N-+2 unknowns, the @} and @?

\
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Homogeneous solution method

This method is the closest to the standard analytical way of solving linear
differential equations.

o find a particular solution in each domain.

@ compute the homogeneous solutions in each domain.
@ determine the coefficients of the homogeneous solutions by
imposing :
o the boundary conditions.

e the matching of the solution at the boundary.
o the matching of the first derivative.
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Homogeneous solutions

In general and they can be known either :

@ by numerically solving Lu = 0.

@ or, most of the time, they can be found analytically.

The number of homogeneous solutions can be modified for regularity
reasons.
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Particular solution

In each domain, we can seek a particular solution g by a Tau residual
method.

N
(Tk‘R) =0= ZLM'&J = §k

=0

However, due to the presence of homogeneous solutions, the matrix L;;
is degenerate.

More precisely, L;; is more and more degenerate as N — oo, the
homogeneous solution being better described by their interpolant.

N
ZijlNLj — 0 when N — oo
j=0
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The non-degenerate operator

A non-degenerate operator O can be obtained by removing :

o the m first columns of L;; (imposes that the first m coefficients of ¢
are 0).

@ the m last lines of L;; (relaxes the last m equations for the residual).

@ m is the number of homogeneous solutions (typically m = 2).

The matrix O is, generally, non-degenerate, and can be inverted.(true as
long as the m first coefficients of the HS are not 0...)
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Matching system

@ 2 domains.

@ 2 homogeneous solutions in each of them.

The system (4 equations)

@ two boundary conditions (left and right).
@ matching of the solution across the boundary.

@ matching of the first radial derivative.

The unknowns are the coefficients of the homogeneous solutions (4 in
this particular case).
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Variational formulation

Warning : this method is easily applicable only when using Legendre
polynomials because it requires that w (z) = 1.

We will write Lu as Lu = —u" + Fu, F being a first order differential
operator on u.

Starting point

@ weighted residual equation :

(€[R) =0 — /g (=’ + Fu)do = /Esdx

@ Integration by part :

[—eu] + / &u'da + / £Fudz = / Esdx

Test functions

As for the collocation method : £ = 0 = 0 (z — ) for all points but
r=—-land z = 1.

A,
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Various operators

Derivation in configuration space

N
g (xx) = Drjg (z5) (8)
=

First order operator F' in the configuration space

Fu () :ZFMU(%‘) (9)
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Expression of the integrals

[—&u ]+ [Euw/da + [EFudz = [ Esda
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Equations for the points inside the domains

[-&u'] = 0 so that, in each domain :

N N
ZZD”D”’W (x5) ZFnJu(mJ n = 8 (2n) Wy

i=0 j=0

In each domain : 0 <n < N, i.e. 2N-2 equations.
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Equations at the boundary

In the domain 1 :

n=N and [-&u] = —ut (21 = 1;2 = 0)

N N N
ut(z1=1) = Z Z Dy Dinwiw* (x5) + E:FNJ'“1 (z5) | ww
i=0 j=0 =0
—st (zy)wy

In the domain 2 :

n=0and [-&u] = u? (23 = —1;2 = 0)

N N N
u?(za=-1) = fZZDijDiowiﬁ(iEj)* ZFOJ‘U2(%’) Wo
=0

i=0 j=0

+5° (z0) wo
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Matching equation

N N
ZZD”Dlel .’E] ZFN] SL'j wWN

i=0 j=0

N N
+ 2D DigDiowi( ZFoJ z;) | wo

i=0 j=0

=gt (zn)wn + s (:z:o)wo

Additional equations

| A

e Boundary condition at # = —1 : u! (x9) = 0
e Boundary condition at z =1 : u? (zx) =0
e Matching at =0 : u! (zx) = u? (z0)

We solve for the unknowns u’ (z;).
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Why Legendre?

1
N
/—u”fwdaz = [/ fw] + /u’f’w’dx

Suppose we use Chebyshev : w(z) =

Difficult (if not impossible) to compute u’ at the boundary, given that w
is divergent there = difficult to impose the weak matching condition.
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Array of double : the Tbl

Constructor : Tbl::Tbl(int ... ). The number of dimension is 1,
2 or 3.

Allocation : Tbl::set_etat_qcq()

Allocation to zero : Tbl::annule_hard()

Reading of an element : Tbl::operator() (int ...)
Writing of an element : Tbl::set(int...)

Output : operator cout
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Matrix : Matrice

Constructor : Matrice::Matrice(int, int).

Allocation : Matrice::set_etat_qcq()

Allocation to zero : Matrice::annule_hard()

Reading of an element : Matrice::operator () (int, int)
Writing of an element : Matrice::set(int, int)

Output : operator cout

Allocation of the banded form : Matrice::set(int up, int
down)

Computes the LU decomposition : Matrice::set_1u()

@ Inversion of a system AX =Y : Tbl Matrice::inverse(Tbl y).
The LU decomposition must be done before.
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Tuesday directory

What it provides

@ Routines to computes collocation points, weights, and coefficients
(using Thl).

@ For Chebyshev (cheby.h and cheby.C)

o For Legendre (leg.h and leg.C)

@ The action of the second derivative in Chebyshev space (solver.C)

<

What should | do?

@ Go to Lorene/School05 directory.

type cvs update -d to get todays files.
compile solver (using make).

run it ... (disappointing isnt'it ?).

write what is missing.




	Introduction
	One-domain methods
	Multi-domain methods
	Some LORENE objects

