tovább fel vissza

General relativity

Dr. Gyula Bene
Department for Theoretical Physics, Loránd Eötvös University
Pázmány Péter sétány 1/A, 1117 Budapest
5. week

Action integral of gravity

Short review of classical field theory. Action, Lagrangian density, Euler-Lagrange equation of motion, conservation theories. Indeterminacy of the energy-momantum tensor. Action integral of gravity.

Short review of classical field theory

$q(x,y,z,t)$: field component (eg. component of electric field strength, or component of metric tensor) $\Lambda\left(q,q_{,i}\right)$ : Lagrangian density (depends on field components and their first derivatives with respect to spatial coordinates and time). Here $q_{,i}=\frac{\partial q}{\partial x^i}$ $$\begin{align} S=\int \Lambda\left(q,q_{,i}\right)d\Omega \end{align}$$ ( $d\Omega=c\;dV\;dt$ ) $$\begin{align} \delta S=\int \left[\frac{\partial \Lambda}{\partial q}\delta q +\frac{\partial \Lambda}{\partial q_{,i}}\delta q_{,i}\right]d\Omega= \int \left[\frac{\partial \Lambda}{\partial q}\delta q +\frac{\partial}{\partial x^i}\left(\frac{\partial \Lambda}{\partial q_{,i}}\delta q\right) -\delta q\frac{\partial}{\partial x^i}\frac{\partial \Lambda}{\partial q_{,i}} \right]d\Omega=0 \end{align}$$ Euler-Lagrange equation of motion: $$\begin{align} \frac{\partial}{\partial x^i}\frac{\partial \Lambda}{\partial q_{,i}}- \frac{\partial \Lambda}{\partial q}=0 \end{align}$$ Energy and momentum conservation:
Since the Langrangian density does not depend explicitely on spatial coordinates and time, we have $$\begin{align} \frac{\partial \Lambda}{\partial x^i}=\frac{\partial \Lambda}{\partial q}\frac{\partial q}{\partial x^i} + \frac{\partial \Lambda}{\partial q_{,k}}\frac{\partial q_{,k}}{\partial x^i} \end{align}$$ Applying the equation of motion: $$\begin{align} \frac{\partial \Lambda}{\partial x^i}=\frac{\partial}{\partial x^k}\frac{\partial \Lambda}{\partial q_{,k}}q_{,i} + \frac{\partial \Lambda}{\partial q_{,k}}q_{,k,i}=\frac{\partial}{\partial x^k} \left(q_{,i}\frac{\partial \Lambda}{\partial q_{,k}}\right) \end{align}$$ Zero method: $$\begin{align} \frac{\partial}{\partial x^k}\left(q_{,i}\frac{\partial \Lambda}{\partial q_{,k}}-\delta^k_i \Lambda\right)=0 \end{align}$$ Energy-momentum tensor: $$\begin{align} T^k_i=q_{,i}\frac{\partial \Lambda}{\partial q_{,k}}-\delta^k_i \Lambda \end{align}$$ Integrating continuity equation $\frac{\partial T^k_i}{\partial x^k}=0$ from $t_1$ to $t_2$ over time: $$\begin{align} \frac{d P^i}{dt}=0 \end{align}$$ where $$\begin{align} P^i=\int T^{ik}dS_k \end{align}$$ stands for the conserved four-momentum. $T^{ik}$ is indetermined: $$\begin{align} T^{ik}+ \frac{\partial}{\partial x^l}\psi^{ikl} \end{align}$$ also satisfies the continuity equation if $\psi^{ikl}=-\psi^{ilk}$ . This indeterminacy does not influence the conserved four-momentum, since $$\begin{align} \int \frac{\partial \psi^{ikl}}{\partial x^l}dS_k= \frac{1}{2} \int \left(dS_k\frac{\partial \psi^{ikl}}{\partial x^l}-dS_l\frac{\partial \psi^{ikl}}{\partial x^k}\right) =\frac{1}{2} \int \psi^{ikl}df^*_{kl}=0 \end{align}$$ where $df^*_{kl}=\epsilon_{klmn}df^{mn}$ stands for the dual of the surface element $df^{mn}=dx^{(1)m}dx^{(2)n}-dx^{(1)n}dx^{(2)m}$ . The integrand disappears on the surface pushed to the infinity.
Angular momentum conservation (case of scalar field):
Four tensor of angular momentum: $$\begin{align} J^{ik}=\int\left(x^idP^k-x^kdP^i\right)= \int\left(x^iT^{kl}-x^kT^{il}\right)dS_l \end{align}$$ Angular momentum conservation is equivalent with vanishing of divergence of angular momentum density: $$\begin{align} 0=J^{ik}(t_2)-J^{ik}(t_1)=\oint\left(x^iT^{kl}-x^kT^{il}\right)dS_l=\int\frac{\partial}{\partial x^l}\left(x^iT^{kl}-x^kT^{il}\right)d\Omega \end{align}$$ $$\begin{align} \rightarrow \quad \frac{\partial}{\partial x^l}\left(x^iT^{kl}-x^kT^{il}\right)=0 \end{align}$$ But $$\begin{align} \frac{\partial}{\partial x^l}\left(x^iT^{kl}-x^kT^{il}\right) = x^i\frac{\partial T^{kl}}{\partial x^l}-x^k\frac{\partial T^{il}}{\partial x^l}+\delta_l^iT^{kl} -\delta_l^kT^{il}=T^{ki}-T^{ik} \end{align}$$ hence angular momentum conservation implies symmetry of $T^{ki}$.

Prelimiaries: some identities

Derivative of a determinant: $$\begin{align} \frac{\partial g}{\partial x^k}=\frac{\partial }{\partial x^k}\epsilon^{i_0i_1i_2i_3} g_{0i_0}g_{1i_1}g_{2i_2}g_{3i_3}=\epsilon^{i_0i_1i_2i_3} \frac{\partial g_{0i_0}}{\partial x^k}g_{1i_1}g_{2i_2}g_{3i_3}+... \end{align}$$ Coefficient of $\frac{\partial g_{0i_0}}{\partial x^k}$ is $$\begin{align} \epsilon^{i_0i_1i_2i_3} g_{1i_1}g_{2i_2}g_{3i_3}\;, \end{align}$$ the signed subdeterminant which belongs to row 0 and column $i_0$, -ik oszlophoz tartozó előjeles aldetermináns, i.e., $g\;g^{0i_0}$. (Similarly for other terms.) Thus $$\begin{align} \frac{\partial g}{\partial x^k}=g\;g^{ij}\;\frac{\partial g_{ij}}{\partial x^k}\;. \end{align}$$ Since $g_{ij}g^{ij}=\delta^j_j=4$ , $$\begin{align} g^{ij} \frac{\partial g_{ij}}{\partial x^k} =-g_{ij}\frac{\partial g^{ij}}{\partial x^k} \end{align}$$ Applying the definition of Christoffel's symbols, namely, $$\begin{align} \Gamma^i_{kl}= \frac{1}{2}g^{im}\left(\frac{\partial g_{mk}}{\partial x^l}+\frac{\partial g_{ml}}{\partial x^k}-\frac{\partial g_{kl}}{\partial x^m}\right) \end{align}$$ we have $$\begin{align} \Gamma^i_{ki}= \frac{1}{2}g^{im}\left(\frac{\partial g_{mk}}{\partial x^i}+\frac{\partial g_{mi}}{\partial x^k}-\frac{\partial g_{ki}}{\partial x^m}\right)=\frac{1}{2}g^{im}\frac{\partial g_{mi}}{\partial x^k}=\frac{1}{2g}\frac{\partial g}{\partial x^k} \end{align}$$ Covariant divergence of a vector: $$\begin{align} A^i_{;i}\equiv \frac{D A^i}{Dx^i}= \frac{\partial A^i}{\partial x^i}+\Gamma^i_{ki}A^k=\frac{\partial A^i}{\partial x^i} +\frac{1}{2g}\frac{\partial g}{\partial x^k}A^k=\frac{1}{ \sqrt{-g}}\frac{\partial \left(\sqrt{-g}\;A^i\right)}{\partial x^i} \end{align}$$

Action integral of gravity

Stricly speaking, the laws of gravitational field cannot be deduced from other branches of physics. One may apply just analogies: one expects second order partial differential equations (i.e., at most first derivatives in the Lagrangian density), the Lagrangian density is a scalar, field components are the components of the metric tensor.
Difficulty: no scalar can be compiled from the firs derivatives of the metric (Christoffel's symbols). The only scalar at hand is the Ricci scalar (${\mathcal R}$) . This, however, contains second derivatives as well.
Solution: since ${\mathcal R}$ is linear in the second derivatives, we show that $$\begin{align} \int {\mathcal R}\sqrt{-g}d\Omega= \int G\sqrt{-g}d\Omega+ \int \frac{\partial \left(\sqrt{-g}\;w^i\right)}{\partial x^i}d\Omega \end{align}$$ where $G$ contains only first derivatives. Note the $w^i$ does not transform as a vector.
Find second derivatives in ${\mathcal R}\sqrt{-g}$: $$\begin{align} {\mathcal R}\sqrt{-g}= \sqrt{-g}\;g^{ki}\;R^m_{kmi}=\sqrt{-g}\;g^{ki}\;\left( {\underline{ \frac{\partial \Gamma^m_{ki} }{\partial x^m} -\frac{\partial \Gamma^m_{km} }{\partial x^i}}} +\Gamma^m_{nm}\Gamma^n_{ki}-\Gamma^m_{ni}\Gamma^n_{km} \right) \end{align}$$ Second derivatives appear only in the derivatives of Christoffel1s symbols: $$\begin{align} \sqrt{-g}\left(g^{km}\;\frac{\partial \Gamma^i_{km} }{\partial x^i} -g^{ki}\;\frac{\partial \Gamma^m_{km} }{\partial x^i}\right) =\frac{\partial }{\partial x^i}\left(\sqrt{-g}\left[g^{km}\;\Gamma^i_{km}-g^{ki}\;\Gamma^m_{km}\right]\right) \end{align}$$ $$\begin{align} -\left(\Gamma^i_{km}\frac{\partial \left(\sqrt{-g}\;g^{km}\right)}{\partial x^i}-\Gamma^m_{km}\frac{\partial \left(\sqrt{-g}\;g^{ki} \right)}{\partial x^i}\right) \end{align}$$ Thus $$\begin{align} w^i=g^{km}\;\Gamma^i_{km}-g^{ki}\;\Gamma^m_{km} \end{align}$$ and $$\begin{align} G=g^{ki}\;\left(\Gamma^m_{nm}\Gamma^n_{ki}-\Gamma^m_{ni}\Gamma^n_{km} \right) +\frac{\Gamma^m_{km}}{\sqrt{-g}}\frac{\partial \left(\sqrt{-g}\;g^{ki} \right)}{\partial x^i}-\frac{\Gamma^i_{km}}{\sqrt{-g}}\frac{\partial \left(\sqrt{-g}\;g^{km}\right)}{\partial x^i} \end{align}$$ Expressing derivatives of the metric tensor in terms of Christoffel's symbols ($g^{ik}_{;l}=0$): $$\begin{align} \frac{\partial g^{im}}{\partial x^l}=-\Gamma^i_{kl}\;g^{km}-\Gamma^m_{kl}\;g^{ik} \end{align}$$ Aplying this, we get: $$\begin{align} G=g^{ki}\;\left(\Gamma^m_{nm}\Gamma^n_{ki}-\Gamma^m_{ni}\Gamma^n_{km} \right) +\Gamma^m_{km}\;\Gamma^n_{in}\;g^{ki}-\Gamma^m_{km}\;\Gamma^i_{ni}\;g^{nk}-\Gamma^m_{km}\;\Gamma^k_{ni}\;g^{in}\end{align}$$$$\begin{align} {\underline{-\Gamma^i_{km}\;\Gamma^n_{in}\;g^{km}}}+\Gamma^i_{km}\;\Gamma^k_{ni}\;g^{nm}{\underline{+\Gamma^i_{km}\;\Gamma^m_{ni}\;g^{kn}}} \end{align}$$ Hence $$\begin{align} G=g^{ki}\;\left(\Gamma^m_{ni}\Gamma^n_{km}-\Gamma^m_{nm}\Gamma^n_{ki} \right) \end{align}$$ Lagrangian density: $$\begin{align} -\frac{c^3}{16\pi k}{\mathcal R}\sqrt{-g} \end{align}$$ Minus sign ensures that the action integral be positive definite. $k=6.67\times 10^{-11} \frac{{\rm m^3}}{{\rm kg s^2}}$ stands for the gravity constant.
tovább fel vissza
bene@arpad.elte.hu