Engedélyezze a JavaScript-et az oldal helyes működéséhez!
tovább fel vissza

General relativity

Dr. Gyula Bene
Department for Theoretical Physics, Loránd Eötvös University
Pázmány Péter sétány 1/A, 1117 Budapest
3. week

The laws of physics in curved spacetime

Motion of mass point in gravitational field
Principle of least action: \[\begin{align} \delta S=-mc \delta\;\int ds =0 \end{align}\] Equation of motion: \[\begin{align} \frac{Du^i}{Ds}=0 \end{align}\] ( \(u^i=\frac{dx^i}{ds}\) stands for the four velocity), i.e. \[\begin{align} \frac{d^2 x^i}{ds^2}+\Gamma^i_{\phantom{1}kl}\frac{d x^k}{ds}\frac{d x^l}{ds}=0 \end{align}\] Hamilton-Jacobi equation \[\begin{align} p^i=mcu^i \end{align}\] \[\begin{align} p_ip^i=m^2c^2 \end{align}\] \[\begin{align} g^{ik}\frac{\partial S}{\partial x^i}\frac{\partial S}{\partial x^k}-m^2c^2=0 \end{align}\] Light propagation \[\begin{align} \frac{d k^i}{d\lambda}+\Gamma^i_{\phantom{1}kl}k^k k^l=0 \end{align}\] where the wave number vector \(k^i\) is defined as \[\begin{align} k^i=\frac{dx^i}{d\lambda}\;, \end{align}\] or, alternatively, as \[\begin{align} k_i=\frac{\partial \psi}{\partial x^i}\;, \end{align}\] \(\psi\) being the phase (also called eikonal).

Weak gravitational field
Non-relativistic Lagrangian: \[\begin{align} L=-mc^2+\frac{mv^2}{2}-m\varphi \end{align}\] Since the relativistic action is \(-mc\int ds\), we have \[\begin{align} -mc \;ds=(-mc^2+\frac{mv^2}{2}-m\varphi)dt\;, \end{align}\] or \[\begin{align} ds= c dt+\frac{\varphi}{c}dt-\frac{v^2}{2c}dt\;. \end{align}\] Taking the square, we have (up to \(\cal{O} (1)\) in \(1/c\) ) \[\begin{align} ds^2=(c^2+2\varphi)dt^2-d\bf{r}^2\;, \end{align}\] since \(v^2dt^2=d\bf{r}^2\). Therefore, \[\begin{align} g_{00}=1+\frac{2\varphi}{c^2} \end{align}\] Static gravitational field, gravitational redshift
Change of frequency during light propagation in stationary gravitational field: \[\begin{align} \frac{d k_0}{d\lambda}-\Gamma_{l0m}k^l k^m=0 \end{align}\] Remember the expression of Christoffel's symbols: \[\begin{align} \Gamma_{l0m}=\frac{1}{2}\left(g_{l0,m}+g_{lm,0}-g_{m0,l}\right) \end{align}\] Since the field is stationary, the middle term vanishes. The remaining expression is antisymmetric in the indices \(l,m\), therefore \(\Gamma_{l0m}k^l k^m=0\). This implies that in a stationary gravitational field \[\begin{align} \frac{d k_0}{d\lambda}=0\; \end{align}\] i.e., the frequency \(k_0\) is unchanged during propagation.
Frequency measured in proper time: \[\begin{align} \omega=\frac{k_0}{\sqrt{g_{00}}}\approx k_0\left(1-\frac{\varphi}{c^2}\right) \end{align}\] Let \(\varphi_1,\varphi_2\) be the Newtonian gravitational potentials at emission and absorbtion of a light ray, respectively. We then have the frequency change (compared to the frequency of the source) \[\begin{align} \Delta \omega=\frac{\varphi_1-\varphi_2}{c^2}\omega\phantom{reds} \end{align}\] when observing it. The Newtonian potentials are negative. If the source is placed near a heavier celestial body (say, near the Sun) than the Earth where the detector is located, and hence \(| \varphi_1|>|\varphi_2|\), we have \(\Delta \omega<0\), the gravitational redshift.

Maxwell's equations in gravitational field
Field tensor: \[\begin{align} F_{ik}=A_{k;i}-A_{i;k}=\frac{\partial A_k}{\partial x^i}-\frac{\partial A_i}{\partial x^k} \end{align}\] Four electric current density:
Preliminaries:
Invariant four-volume: \[\begin{align} d\Omega=dx'^0dx'^1dx'^2dx'^3=\frac{\partial(x'^0,x'^1,x'^2,x'^3)}{\partial(x^0,x^1,x^2,x^3)}dx^0dx^1dx^2dx^3 \end{align}\] Here \(J=\frac{\partial(x'^0,x'^1,x'^2,x'^3)}{\partial(x^0,x^1,x^2,x^3)}\) stands for the Jacobian, i.e., determinant of the transformation matrix \(\partial x'^i/\partial x^j\). Consider \[\begin{align} g'_{ij}=\frac{\partial x^k}{\partial x'^i}\frac{\partial x^l}{\partial x'^j}g_{kl} \end{align}\] Taking the determinant of both sides, we have \[\begin{align} -1=\frac{1}{J^2}g\;, \end{align}\] hence \[\begin{align} J=\sqrt{-g}\;, \end{align}\] and \[\begin{align} d\Omega=\sqrt{-g}dx^0dx^1dx^2dx^3 \end{align}\] Similarly, the proper three-volume element is \[\begin{align} \sqrt{\gamma}dx^1dx^2dx^3\;, \end{align}\] where \(\gamma\) stands for the determinant of the three-metric \(-g_{\alpha\beta}+g_{0\alpha}g_{0\beta}/g_{00}\).
Relation between the determinants \(g\) and \(\gamma\): \[\begin{align} g=\text{det} \begin{pmatrix} g_{00} && g_{0\beta}\\ g_{\alpha 0} && g_{\alpha\beta} \end{pmatrix} =\text{det} \begin{pmatrix} g_{00} && 0\\ g_{\alpha 0} && g_{\alpha\beta}-g_{\alpha 0}g_{0\beta}/g_{00} \end{pmatrix} =g_{00}\left(-\gamma\right) \end{align}\] (end of preliminaries)
\[\begin{align} j^i=\frac{de\;c\;dx^i}{d\Omega}=\frac{de\;c\;dx^i}{\sqrt{-g}dx^0dx^1dx^2dx^3}=\frac{de\;c}{\sqrt{\gamma}dx^1dx^2dx^3}\frac{dx^i}{\sqrt{g_{00}}dx^0}=\frac{\rho c}{\sqrt{g_{00}}}\frac{dx^i}{dx^0} \end{align}\] Maxwell's equations: \[\begin{align} \frac{\partial F_{ik}}{\partial x^l}+\frac{\partial F_{li}}{\partial x^k}+\frac{\partial F_{kl}}{\partial x^i}=0 \end{align}\] \[\begin{align} F^{ik}_{;k}=\frac{1}{\sqrt{-g}}\frac{\partial }{\partial x^k}\left(\sqrt{-g}F^{ik}\right)=-\frac{j^i}{\epsilon_0 c^2} \end{align}\] Continuity equation for electric charge: \[\begin{align} j^i_{;i}=\frac{1}{\sqrt{-g}}\frac{\partial }{\partial x^i}\left(\sqrt{-g}\;j^{i}\right)=0 \end{align}\] Proof of divergence expressions:
Note that \[\begin{align} \frac{\partial g}{\partial x^i}=\frac{\partial g_{jk}}{\partial x^i}\left(g\;g^{jk}\right) \end{align}\] Then \[\begin{align} F^{ik}_{;k}=F^{ik}_{,k}+\underbrace{\Gamma^i_{\phantom{i}mk}F^{mk}}_{=0}+\Gamma^k_{\phantom{k}mk}F^{im} \end{align}\] Here \[\begin{align} \Gamma^k_{\phantom{k}mk}=\frac{1}{2}g^{jk}\left(g_{jm,k}+g_{jk,m}-g_{mk,j}\right)=\frac{1}{2}g^{jk}g_{jk,m}=\frac{1}{2g}\frac{\partial g}{\partial x^m}=\frac{1}{\sqrt{-g}}\frac{\partial \sqrt{-g}}{\partial x^m}\;. \end{align}\] Therefore \[\begin{align} F^{ik}_{;k}=F^{ik}_{,k}+\frac{1}{\sqrt{-g}}\frac{\partial \sqrt{-g}}{\partial x^m}F^{im}=\frac{1}{\sqrt{-g}}\frac{\partial }{\partial x^k}\left(\sqrt{-g}F^{ik}\right) \end{align}\] Similarly \[\begin{align} j^{i}_{;i}=j^{i}_{,i}+\Gamma^i_{\phantom{i}mi}j^m=j^{i}_{,i}+\frac{1}{\sqrt{-g}}\frac{\partial \sqrt{-g}}{\partial x^m}j^{m}=\frac{1}{\sqrt{-g}}\frac{\partial }{\partial x^i}\left(\sqrt{-g}\;j^{i}\right) \end{align}\] (end of proof)

Motion of charged particle in electromagnetic and gravitational fields: \[\begin{align} m\left(\frac{d u^i}{ds}+\Gamma^i_{\phantom{1}kl}u^k u^l\right)=qF^{ik}u_k \end{align}\]
tovább fel vissza
bene@arpad.elte.hu