Engedélyezze a JavaScript-et az oldal helyes működéséhez!
tovább fel vissza

General relativity

Dr. Gyula Bene
Department for Theoretical Physics, Loránd Eötvös University
Pázmány Péter sétány 1/A, 1117 Budapest
4. week

Riemannian (curvature tensor)

Parallel displacement of a vector along a closed curve. Curvature tensor. Symmetries of the Riemannian. Bianchi identity. Weil tensor, Ricci tensor, scalar curvature. Example: calculating the Riemannian on a curved two dimensional surface. Number of independent tensor components in two, three and four dimensions.

Curvature tensor

Problem: what local quantity signals that spacetime is curved? Parallel displacement of a vector: components in a locally Minkowskian spacetime are unchanged. In curved spacetime: \[\begin{align}DA^i=0\end{align}\] During parallel displacement along a geodesics (\(Du^i=0\)) the angle made with the tangent of the trajectory (\(u^i\))is constant.
Parallel displacement along a closed curve:
x
Fig. 4.1. On a curved surface parallel displacement along a closed curve does not reproduce the original vector.
\[\begin{align} \Delta A_k=\oint \Gamma^i_{\phantom{1}kl}A_i dx^l \end{align}\] \[\begin{align} \frac{\partial A_i}{\partial x^l}=\Gamma^n_{\phantom{1}il}A_n \end{align}\] Stokes's theorem: \[\begin{align} \oint A_i\;dx^i=\int df^{ki}\frac{\partial A^i}{\partial x^k} = \frac{1}{2}\int df^{ki}\left(\frac{\partial A^i}{\partial x^k}-\frac{\partial A^k}{\partial x^i}\right) \end{align}\] where \[\begin{align}df^{ki}=dx^{(1) k}dx^{(2) i}-dx^{(1) i}dx^{(2) k}\end{align}\] stands for the surface of the parallelogram spanned by the vectors \(dx^{(1) i}\) and \(dx^{(2) i}\). \[\begin{align} \Delta A_k=\frac{1}{2}\left[ \frac{\partial \left(\Gamma^i_{\phantom{1}km} A_i\right)}{\partial x^l}- \frac{\partial \left(\Gamma^i_{\phantom{1}kl} A_i\right)}{\partial x^m} \right]\Delta f^{lm} \end{align}\] \[\begin{align} \Delta A_k=\frac{1}{2}{\mathcal R}^i_{\phantom{1}klm}A_i \Delta f^{lm} \end{align}\] \[\begin{align} {\mathcal R}^i_{\phantom{1}klm}= \frac{\partial \Gamma^i_{\phantom{1}km} }{\partial x^l} -\frac{\partial \Gamma^i_{\phantom{1}kl} }{\partial x^m} +\Gamma^i_{\phantom{1}nl}\Gamma^n_{\phantom{1}km}-\Gamma^i_{\phantom{1}nm}\Gamma^n_{\phantom{1}kl} \end{align}\] Expressing the Riemannian in terms of Christoffel symbols: \[\begin{align} {\mathcal R}^i_{\phantom{1}klm}A_i&= \frac{\partial \left(\Gamma^i_{\phantom{1}km} A_i\right)}{\partial x^l}- \frac{\partial \left(\Gamma^i_{\phantom{1}kl} A_i\right)}{\partial x^m} \\ &=\left(\frac{\partial \Gamma^i_{\phantom{1}km}}{\partial x^l}- \frac{\partial \Gamma^i_{\phantom{1}kl} }{\partial x^m}\right) A_i +\Gamma^i_{\phantom{1}km} \Gamma^n_{\phantom{1}il}A_n- \Gamma^i_{\phantom{1}kl}\Gamma^n_{\phantom{1}im}A_n \\ &=\left(\frac{\partial \Gamma^i_{\phantom{1}km}}{\partial x^l}- \frac{\partial \Gamma^i_{\phantom{1}kl} }{\partial x^m} +\Gamma^n_{\phantom{1}km} \Gamma^i_{\phantom{1}nl}- \Gamma^n_{\phantom{1}kl}\Gamma^i_{\phantom{1}nm} \right) A_i \end{align}\] We made use that \[\begin{align} \frac{\partial A_i}{\partial x^l}=\Gamma^n_{\phantom{1}il}A_n \end{align}\] The derivation is valid for an arbitrary vector \(A_i\), hence \[\begin{align}{\mathcal R}^i_{\phantom{1}klm}=\frac{\partial \Gamma^i_{\phantom{1}km}}{\partial x^l}- \frac{\partial \Gamma^i_{\phantom{1}kl} }{\partial x^m} +\Gamma^n_{\phantom{1}km} \Gamma^i_{\phantom{1}nl}- \Gamma^n_{\phantom{1}kl}\Gamma^i_{\phantom{1}nm}\end{align}\]

Properties of the Riemannian

Change of a contravariant vector along an infinitesimally small closed surface

\[\begin{align} \Delta A^k=-\frac{1}{2}{\mathcal R}^k_{\phantom{1} ilm}A^i \Delta f^{lm} \end{align}\] Proof: \[\begin{align}\Delta \left(A^kB_k\right)=0\end{align}\] \[\begin{align} \Delta \left(A^kB_k\right)&=B_k\Delta A^k+A^k\Delta B_k \\ &=B_k\Delta A^k+A^k\frac{1}{2}{\mathcal R}^i_{\phantom{1}klm}B_i \Delta f^{lm} \\ &=B_k\left(\Delta A^k+A^i\frac{1}{2}{\mathcal R}^k_{\phantom{1}ilm} \Delta f^{lm}\right) \end{align}\] Since \(B_k\) is arbitrary, we have \[\begin{align} \Delta A^k=-\frac{1}{2}{\mathcal R}^k_{\phantom{1}ilm}A^i \Delta f^{lm}\end{align}\] Q.E.D.

Difference of second covariant derivatives taken in different orderings is proportional to the Riemannian I.

\[\begin{align} A_{i;k;l}-A_{i;l;k}=A_m {\mathcal R}^m_{\phantom{1}ikl} \end{align}\] Proof: \[\begin{align} A_{i;k;l}&=A_{i;k,l}-\Gamma^n_{\phantom{1}il}A_{n;k}-\Gamma^n_{\phantom{1}kl}A_{i;n} \\ &=A_{i,k,l}-\frac{\partial }{\partial x^l}\left(\Gamma^n_{\phantom{1}ik}A_{n}\right)-\Gamma^n_{\phantom{1}il}A_{n,k}+\Gamma^n_{\phantom{1}il}\Gamma^m_{\phantom{1}nk}A_m-\Gamma^n_{\phantom{1}kl}A_{i,n}+\Gamma^n_{\phantom{1}kl}\Gamma^m_{\phantom{1}in}A_m \\ &=A_{i,k,l}-\frac{\partial \Gamma^n_{\phantom{1}ik}}{\partial x^l}A_{n}-\Gamma^n_{\phantom{1}ik}A_{n,l} -\Gamma^n_{\phantom{1}il}A_{n,k}-\Gamma^n_{\phantom{1}kl}A_{i,n} +\Gamma^n_{\phantom{1}il}\Gamma^m_{\phantom{1}nk}A_m+\Gamma^n_{\phantom{1}kl}\Gamma^m_{\phantom{1}in}A_m\\ A_{i;l;k}&=A_{i,l,k}-\frac{\partial \Gamma^n_{\phantom{1}il}}{\partial x^k}A_{n}-\Gamma^n_{\phantom{1}il}A_{n,k} -\Gamma^n_{\phantom{1}ik}A_{n,l}-\Gamma^n_{\phantom{1}lk}A_{i,n} +\Gamma^n_{\phantom{1}ik}\Gamma^m_{\phantom{1}nl}A_m+\Gamma^n_{\phantom{1}lk}\Gamma^m_{\phantom{1}in}A_m \\ A_{i;k;l}-A_{i;l;k}&=\left(\frac{\partial \Gamma^m_{\phantom{1}il}}{\partial x^k}-\frac{\partial \Gamma^m_{\phantom{1}ik}}{\partial x^l}+\Gamma^n_{\phantom{1}il}\Gamma^m_{\phantom{1}nk}-\Gamma^n_{\phantom{1}ik}\Gamma^m_{\phantom{1}nl}\right)A_m \\ &={\mathcal R}^m_{\phantom{1}ikl}A_m\end{align}\] Q.E.D.

Difference of second covariant derivatives taken in different orderings is proportional to the Riemannian II.

\[\begin{align} A^i_{;k;l}-A^i_{;l;k}=-A^m {\mathcal R}^i_{\phantom{1}mkl} \end{align}\] Proof: \[\begin{align}A^i_{;k;l}&=A^i_{;k,l}+\Gamma^i_{\phantom{1}nl}A^n_{;k}-\Gamma^n_{\phantom{1}kl}A^i_{;n} \\ &=A^i_{,k,l}+\frac{\partial }{\partial x^l}\left(\Gamma^i_{\phantom{1}nk}A^{n}\right)+\Gamma^i_{\phantom{1}nl}A^n_{,k}+\Gamma^i_{\phantom{1}nl}\Gamma^n_{\phantom{1}mk}A^m-\Gamma^n_{\phantom{1}kl}A^i_{,n}-\Gamma^n_{\phantom{1}kl}\Gamma^i_{\phantom{1}mn}A^m \\ &=A^i_{,k,l}+\frac{\partial \Gamma^i_{\phantom{1}nk}}{\partial x^l}A^{n}+\Gamma^i_{\phantom{1}nk}A^n_{,l}+\Gamma^i_{\phantom{1}nl}A^n_{,k}+\Gamma^i_{\phantom{1}nl}\Gamma^n_{\phantom{1}mk}A^m-\Gamma^n_{\phantom{1}kl}A^i_{,n}-\Gamma^n_{\phantom{1}kl}\Gamma^i_{\phantom{1}mn}A^m\\ A^i_{;l;k}&=A^i_{,l,k}+\frac{\partial \Gamma^i_{\phantom{1}nl}}{\partial x^k}A^{n}+\Gamma^i_{\phantom{1}nl}A^n_{,k}+\Gamma^i_{\phantom{1}nk}A^n_{,l}+\Gamma^i_{\phantom{1}nk}\Gamma^n_{\phantom{1}ml}A^m-\Gamma^n_{\phantom{1}lk}A^i_{,n}-\Gamma^n_{\phantom{1}lk}\Gamma^i_{\phantom{1}mn}A^m\end{align}\] \[\begin{align} A^i_{;k;l}-A^i_{;l;k}&=-\left(\frac{\partial \Gamma^i_{\phantom{1}ml}}{\partial x^k}-\frac{\partial \Gamma^i_{\phantom{1}mk}}{\partial x^l}+\Gamma^i_{\phantom{1}nk}\Gamma^n_{\phantom{1}ml} -\Gamma^i_{\phantom{1}nl}\Gamma^n_{\phantom{1}mk} \right)A^m \\ &=-{\mathcal R}^i_{\phantom{1}mkl}A^m\end{align}\] Q.E.D.

Symmetries of the Riemannian

\[\begin{align} {\mathcal R}_{iklm}=g_{in}{\mathcal R}^n_{\phantom{1}klm} &= \frac{1}{2}\left(\frac{\partial^2 g_{im}}{\partial x^k \partial x^l} +\frac{\partial^2 g_{kl}}{\partial x^i \partial x^m} -\frac{\partial^2 g_{il}}{\partial x^k \partial x^m} -\frac{\partial^2 g_{km}}{\partial x^i \partial x^l} \right) \\ &+g_{np}\left(\Gamma^n_{\phantom{1}kl}\Gamma^p_{\phantom{1}im}-\Gamma^n_{\phantom{1}km}\Gamma^p_{\phantom{1}il}\right)\phantom{riemann_kov} \end{align}\] Proof: \[\begin{align}{\mathcal R}_{iklm}&=g_{in}{\mathcal R}^n_{\phantom{1}klm}= g_{in}\left(\frac{\partial \Gamma^n_{\phantom{1}km} }{\partial x^l} -\frac{\partial \Gamma^n_{\phantom{1}kl} }{\partial x^m} +\Gamma^n_{\phantom{1}pl}\Gamma^p_{\phantom{1}km}-\Gamma^n_{\phantom{1}pm}\Gamma^p_{\phantom{1}kl}\right) \\ &=\frac{\partial \Gamma_{ikm} }{\partial x^l} -\frac{\partial \Gamma_{ikl} }{\partial x^m}-\Gamma^n_{\phantom{1}km}g_{in,l}+ \Gamma^n_{\phantom{1}kl}g_{in,m}+g_{in}\left(\Gamma^n_{\phantom{1}pl}\Gamma^p_{\phantom{1}km}-\Gamma^n_{\phantom{1}pm}\Gamma^p_{\phantom{1}kl}\right)\end{align}\] \[\begin{align} \Gamma_{ikm}&=\frac{1}{2}\left(g_{ik,m}+g_{im,k}-g_{km,i}\right)\\ \Gamma_{ikl}&=\frac{1}{2}\left(g_{ik,l}+g_{il,k}-g_{kl,i}\right)\\ g_{in,l}&=\Gamma^p_{\phantom{1}il}g_{pn}+\Gamma^p_{\phantom{1}nl}g_{ip}\\ g_{in,m}&=\Gamma^p_{\phantom{1}im}g_{pn}+\Gamma^p_{\phantom{1}nm}g_{ip}\end{align}\] \[\begin{align} {\mathcal R}_{iklm}&=\frac{1}{2}\left(g_{ik,ml}+g_{im,kl}-g_{km,il}-g_{ik,lm}-g_{il,km}+g_{kl,im}\right) \\ &-\Gamma^n_{\phantom{1}km}\Gamma^p_{\phantom{1}il}g_{pn}-\Gamma^n_{\phantom{1}km}\Gamma^p_{\phantom{1}nl}g_{ip}+\Gamma^n_{\phantom{1}kl}\Gamma^p_{\phantom{1}im}g_{pn}+\Gamma^n_{\phantom{1}kl}\Gamma^p_{\phantom{1}nm}g_{ip} \\ &+g_{in}\left(\Gamma^n_{\phantom{1}pl}\Gamma^p_{\phantom{1}km}-\Gamma^n_{\phantom{1}pm}\Gamma^p_{\phantom{1}kl}\right)\end{align}\] I.e. \[\begin{align} {\mathcal R}_{iklm}&=\frac{1}{2}\left(\frac{\partial^2 g_{im}}{\partial x^k\partial x^l}+ \frac{\partial^2 g_{kl}}{\partial x^i\partial x^m}-\frac{\partial^2 g_{km}}{\partial x^i\partial x^l}-\frac{\partial^2 g_{il}}{\partial x^k\partial x^m}\right) \\ &+g_{pn}\left(\Gamma^n_{\phantom{1}kl}\Gamma^p_{\phantom{1}im} -\Gamma^n_{\phantom{1}km}\Gamma^p_{\phantom{1}il}\right)\end{align}\] Q.E.D.

Antisymmetry with respect to the exchange of the first and second, or the third and fourth indices

\[\begin{align} {\mathcal R}_{iklm}=-{\mathcal R}_{kilm}=-{\mathcal R}_{ikml} \end{align}\]

Symmetry with respect to the exchange of the first and second paires of indices

\[\begin{align} {\mathcal R}_{iklm}={\mathcal R}_{lmik} \end{align}\]

Cyclic sum of any three indices vanishes

\[\begin{align} {\mathcal R}_{iklm}+{\mathcal R}_{imkl}+{\mathcal R}_{ilmk}=0 \end{align}\] Proof: \[\begin{align}{\mathcal R}_{iklm}+{\mathcal R}_{imkl}+{\mathcal R}_{ilmk}&= \frac{1}{2}\left(\frac{\partial^2 g_{im}}{\partial x^k\partial x^l}+ \frac{\partial^2 g_{kl}}{\partial x^i\partial x^m}-\frac{\partial^2 g_{km}}{\partial x^i\partial x^l}-\frac{\partial^2 g_{il}}{\partial x^k\partial x^m}\right) \\ &+\frac{1}{2}\left(\frac{\partial^2 g_{il}}{\partial x^m\partial x^k}+ \frac{\partial^2 g_{mk}}{\partial x^i\partial x^l}-\frac{\partial^2 g_{ml}}{\partial x^i\partial x^k}-\frac{\partial^2 g_{ik}}{\partial x^m\partial x^l}\right) \\ &+\frac{1}{2}\left(\frac{\partial^2 g_{ik}}{\partial x^l\partial x^m}+ \frac{\partial^2 g_{lm}}{\partial x^i\partial x^k}-\frac{\partial^2 g_{lk}}{\partial x^i\partial x^m}-\frac{\partial^2 g_{im}}{\partial x^l\partial x^k}\right) \\ &+g_{pn}\left(\Gamma^n_{\phantom{1}kl}\Gamma^p_{\phantom{1}im} -\Gamma^n_{\phantom{1}km}\Gamma^p_{\phantom{1}il}\right) \\ &+g_{pn}\left(\Gamma^n_{\phantom{1}mk}\Gamma^p_{\phantom{1}il} -\Gamma^n_{\phantom{1}ml}\Gamma^p_{\phantom{1}ik}\right) \\ &+g_{pn}\left(\Gamma^n_{\phantom{1}lm}\Gamma^p_{\phantom{1}ik} -\Gamma^n_{\phantom{1}lk}\Gamma^p_{\phantom{1}im}\right)=0\end{align}\] Q.E.D.

Ricci tensor

\[\begin{align} {\mathcal R}_{ik}=g^{lm}{\mathcal R}_{limk}={\mathcal R}^m_{\phantom{1}imk} \end{align}\] \[\begin{align} {\mathcal R}_{ik}={\mathcal R}_{ki} \end{align}\]

Invariant curvature (Ricci scalar)

\[\begin{align} {\mathcal R}=g^{ik}{\mathcal R}_{ik} \end{align}\]

Two dimensional case

\[\begin{align} {\mathcal R}=\frac{2{\mathcal R}_{1212}}{\gamma} \end{align}\] \[\begin{align} \frac{{\mathcal R}}{2}=K=\frac{1}{\rho_1\rho_2} \end{align}\] where \(\rho_1\) and \(\rho_2\) stand for the principal curvature radii.
Proof: Choose a Cartesian coordinate system at a point \(P\) of a two dimensional surface, embedded into a three dimensional Eucledian frame so that The equation of the surface in a small neighborhood of the origin: \[\begin{align} z=\frac{x^2}{2\rho_1}+\frac{y^2}{2\rho_2}\;. \end{align}\] Surface metric is derived from the distance of two nearby surface points: \[\begin{align} ds^2&=dx^2+dy^2+dz^2=dx^2+dy^2+\left(\frac{xdx}{\rho_1}+\frac{ydy}{\rho_2}\right)^2 \\ &=\left(1+\frac{x^2}{\rho_1^2}\right)dx^2+\left(1+\frac{y^2}{\rho_2^2}\right)dy^2+2\frac{xy}{\rho_1\rho_2}dxdy\;, \end{align}\] thus \[\begin{align} g_{11}&=1+\frac{x^2}{\rho_1^2}\;,\\ g_{12}&=g_{21}=\frac{xy}{\rho_1\rho_2}\;,\\ g_{22}&=1+\frac{y^2}{\rho_2^2} \;. \end{align}\] First derivatives vanish at the origin, and the metric is the unit matrix there. Then we have \[\begin{align} {\mathcal R}_{1212}(0)=\frac{\partial^2 g_{12}}{\partial x \partial y}-\frac{1}{2}\frac{\partial^2 g_{11}}{\partial y^2}-\frac{1}{2}\frac{\partial^2 g_{22}}{\partial x^2}=\frac{1}{\rho_1\rho_2}\;. \end{align}\] Q.E.D.

Bianchi's identity

\[\begin{align} {\mathcal R}^n_{\phantom{1}ikl;m}+{\mathcal R}^n_{\phantom{1}imk;l}+{\mathcal R}^n_{\phantom{1}ilm;k}=0\phantom{bian1} \end{align}\] Proof: \[\begin{align} {\mathcal R}^n_{\phantom{1}ikl;m}+{\mathcal R}^n_{\phantom{1}imk;l}+{\mathcal R}^n_{\phantom{1}ilm;k}=\frac{1}{2}{\mathcal R}^n_{\phantom{1}ikl;m}E^{klmp}\sqrt{-g}\end{align}\] where \[\begin{align}E^{klmp}=\frac{1}{\sqrt{-g}}e^{klmp}\end{align}\] The cyclic sum multiplied by \(1/\sqrt{-g}\) is a tensor. Switching to a locally geodetic (Minkowskian) frame we have \[\begin{align} {\mathcal R}^n_{\phantom{1}ikl;m}=\frac{\partial {\mathcal R}^n_{\phantom{1}ikl}}{\partial x^m} =\frac{\partial^2 \Gamma^n_{\phantom{1}il}}{\partial x^m \partial x^k} -\frac{\partial^2 \Gamma^n_{\phantom{1}ik}}{\partial x^m \partial x^l}\end{align}\] This implies \[\begin{align} {\mathcal R}^n_{\phantom{1}ikl;m}+{\mathcal R}^n_{\phantom{1}imk;l}+{\mathcal R}^n_{\phantom{1}ilm;k} &=\frac{\partial^2 \Gamma^n_{\phantom{1}il}}{\partial x^m \partial x^k} -\frac{\partial^2 \Gamma^n_{\phantom{1}ik}}{\partial x^m \partial x^l} \\ &+\frac{\partial^2 \Gamma^n_{\phantom{1}ik}}{\partial x^l \partial x^m} -\frac{\partial^2 \Gamma^n_{\phantom{1}im}}{\partial x^l \partial x^k} \\ &+\frac{\partial^2 \Gamma^n_{\phantom{1}im}}{\partial x^k \partial x^l} -\frac{\partial^2 \Gamma^n_{\phantom{1}il}}{\partial x^k \partial x^m}=0\end{align}\] Q.E.D.
Bianchi's identity implies by contracting indices \(i\) with \(k\) and \(n\) with \(l\): \[\begin{align} 0=g^{ik}\left({\mathcal R}^l_{\phantom{1}ikl;m}+{\mathcal R}^l_{\phantom{1}imk;l}+{\mathcal R}^l_{\phantom{1}ilm;k}\right)=-{\mathcal R}_{,m}+2{\mathcal R}^l_{\phantom{1}m;l} \end{align}\] or \[\begin{align}{\mathcal R}^l_{\phantom{1}m;l}=\frac{1}{2}\frac{\partial {\mathcal R}}{\partial x^m}\phantom{bian2}\end{align}\]

Number of components of the Riemannian

Two dimensional case:

a single independent component, eg. \({\mathcal R}_{1212}\).

Three dimensional case:

\({\mathcal R}_{\alpha\beta\gamma\delta}\)'s first (\(\alpha\beta\)) and second (\(\gamma\delta\)) pairs of indices take on three values each, hence the number of independent components is the same as that of a symmetric \(3\times 3\) matrix, that is 6. (Cyclic sum vanishes automatically, without implying any further restrictions.)

Four dimensional case:

\({\mathcal R}_{iklm}\)'s first (\(ik\)) and second (\(lm\)) pairs of indices take on six values each. The number of independent components of a \(6\times 6\) symmetric matrix is 21. Cyclic sum vanishes automatically, except when all the four indices are different. In that latter case we have a single further algebraic restriction among components, reducing the number of independent components to 20.

Weil's tensor:

\[\begin{align}C_{iklm}={\mathcal R}_{iklm}-\frac{1}{2}{\mathcal R}_{il}g_{km}+\frac{1}{2}{\mathcal R}_{im}g_{kl}+\frac{1}{2}{\mathcal R}_{kl}g_{im}-\frac{1}{2}{\mathcal R}_{km}g_{il}+\frac{1}{6}{\mathcal R}\left(g_{il}g_{km}-g_{im}g_{kl}\right)\end{align}\] It possesses all the algebraic symmetries of the Riemannian, but contracting any two indices we get zero (irreducible tensor).
tovább fel vissza
bene@arpad.elte.hu