Engedélyezze a JavaScript-et az oldal helyes működéséhez!
tovább fel vissza

General relativity

Dr. Gyula Bene
Department for Theoretical Physics, Loránd Eötvös University
Pázmány Péter sétány 1/A, 1117 Budapest
5. week

Action integral of gravity

Short review of classical field theory. Action, Lagrangian density, Euler-Lagrange equation of motion, conservation theories. Indeterminacy of the energy-momantum tensor. Action integral of gravity.

Short review of classical field theory

\(q(x,y,z,t)\): field component (eg. component of electric field strength, or component of metric tensor) \(\Lambda\left(q,q_{,i}\right)\) : Lagrangian density (depends on field components and their first derivatives with respect to spatial coordinates and time). Here \(q_{,i}=\frac{\partial q}{\partial x^i}\) \[\begin{align} S=\int \Lambda\left(q,q_{,i}\right)d\Omega \end{align}\] ( \(d\Omega=c\;dV\;dt\) ) \[\begin{align} \delta S=\int \left[\frac{\partial \Lambda}{\partial q}\delta q +\frac{\partial \Lambda}{\partial q_{,i}}\delta q_{,i}\right]d\Omega= \int \left[\frac{\partial \Lambda}{\partial q}\delta q +\frac{\partial}{\partial x^i}\left(\frac{\partial \Lambda}{\partial q_{,i}}\delta q\right) -\delta q\frac{\partial}{\partial x^i}\frac{\partial \Lambda}{\partial q_{,i}} \right]d\Omega=0 \end{align}\] Euler-Lagrange equation of motion: \[\begin{align} \frac{\partial}{\partial x^i}\frac{\partial \Lambda}{\partial q_{,i}}- \frac{\partial \Lambda}{\partial q}=0 \end{align}\] Energy and momentum conservation:
Since the Langrangian density does not depend explicitely on spatial coordinates and time, we have \[\begin{align} \frac{\partial \Lambda}{\partial x^i}=\frac{\partial \Lambda}{\partial q}\frac{\partial q}{\partial x^i} + \frac{\partial \Lambda}{\partial q_{,k}}\frac{\partial q_{,k}}{\partial x^i} \end{align}\] Applying the equation of motion: \[\begin{align} \frac{\partial \Lambda}{\partial x^i}=\frac{\partial}{\partial x^k}\frac{\partial \Lambda}{\partial q_{,k}}q_{,i} + \frac{\partial \Lambda}{\partial q_{,k}}q_{,k,i}=\frac{\partial}{\partial x^k} \left(q_{,i}\frac{\partial \Lambda}{\partial q_{,k}}\right) \end{align}\] Zero method: \[\begin{align} \frac{\partial}{\partial x^k}\left(q_{,i}\frac{\partial \Lambda}{\partial q_{,k}}-\delta^k_i \Lambda\right)=0 \end{align}\] Energy-momentum tensor: \[\begin{align} T^k_i=q_{,i}\frac{\partial \Lambda}{\partial q_{,k}}-\delta^k_i \Lambda \end{align}\] Integrating continuity equation \(\frac{\partial T^k_i}{\partial x^k}=0\) from \(t_1\) to \(t_2\) over time: \[\begin{align} \frac{d P^i}{dt}=0 \end{align}\] where \[\begin{align} P^i=\int T^{ik}dS_k \end{align}\] stands for the conserved four-momentum. \(T^{ik}\) is indetermined: \[\begin{align} T^{ik}+ \frac{\partial}{\partial x^l}\psi^{ikl} \end{align}\] also satisfies the continuity equation if \(\psi^{ikl}=-\psi^{ilk}\) . This indeterminacy does not influence the conserved four-momentum, since \[\begin{align} \int \frac{\partial \psi^{ikl}}{\partial x^l}dS_k= \frac{1}{2} \int \left(dS_k\frac{\partial \psi^{ikl}}{\partial x^l}-dS_l\frac{\partial \psi^{ikl}}{\partial x^k}\right) =\frac{1}{2} \int \psi^{ikl}df^*_{kl}=0 \end{align}\] where \(df^*_{kl}=\epsilon_{klmn}df^{mn}\) stands for the dual of the surface element \(df^{mn}=dx^{(1)m}dx^{(2)n}-dx^{(1)n}dx^{(2)m}\) . The integrand disappears on the surface pushed to the infinity.
Angular momentum conservation (case of scalar field):
Four tensor of angular momentum: \[\begin{align} J^{ik}=\int\left(x^idP^k-x^kdP^i\right)= \int\left(x^iT^{kl}-x^kT^{il}\right)dS_l \end{align}\] Angular momentum conservation is equivalent with vanishing of divergence of angular momentum density: \[\begin{align} 0=J^{ik}(t_2)-J^{ik}(t_1)=\oint\left(x^iT^{kl}-x^kT^{il}\right)dS_l=\int\frac{\partial}{\partial x^l}\left(x^iT^{kl}-x^kT^{il}\right)d\Omega \end{align}\] \[\begin{align} \rightarrow \quad \frac{\partial}{\partial x^l}\left(x^iT^{kl}-x^kT^{il}\right)=0 \end{align}\] But \[\begin{align} \frac{\partial}{\partial x^l}\left(x^iT^{kl}-x^kT^{il}\right) = x^i\frac{\partial T^{kl}}{\partial x^l}-x^k\frac{\partial T^{il}}{\partial x^l}+\delta_l^iT^{kl} -\delta_l^kT^{il}=T^{ki}-T^{ik} \end{align}\] hence angular momentum conservation implies symmetry of \(T^{ki}\).

Prelimiaries: some identities

Derivative of a determinant: \[\begin{align} \frac{\partial g}{\partial x^k}=\frac{\partial }{\partial x^k}\epsilon^{i_0i_1i_2i_3} g_{0i_0}g_{1i_1}g_{2i_2}g_{3i_3}=\epsilon^{i_0i_1i_2i_3} \frac{\partial g_{0i_0}}{\partial x^k}g_{1i_1}g_{2i_2}g_{3i_3}+... \end{align}\] Coefficient of \(\frac{\partial g_{0i_0}}{\partial x^k}\) is \[\begin{align} \epsilon^{i_0i_1i_2i_3} g_{1i_1}g_{2i_2}g_{3i_3}\;, \end{align}\] the signed subdeterminant which belongs to row 0 and column \(i_0\), i.e., \(g\;g^{0i_0}\). (Similarly for other terms.) Thus \[\begin{align} \frac{\partial g}{\partial x^k}=g\;g^{ij}\;\frac{\partial g_{ij}}{\partial x^k}\;. \end{align}\] Since \(g_{ij}g^{ij}=\delta^j_j=4\) , \[\begin{align} g^{ij} \frac{\partial g_{ij}}{\partial x^k} =-g_{ij}\frac{\partial g^{ij}}{\partial x^k} \end{align}\] Applying the definition of Christoffel's symbols, namely, \[\begin{align} \Gamma^i_{kl}= \frac{1}{2}g^{im}\left(\frac{\partial g_{mk}}{\partial x^l}+\frac{\partial g_{ml}}{\partial x^k}-\frac{\partial g_{kl}}{\partial x^m}\right) \end{align}\] we have \[\begin{align} \Gamma^i_{ki}= \frac{1}{2}g^{im}\left(\frac{\partial g_{mk}}{\partial x^i}+\frac{\partial g_{mi}}{\partial x^k}-\frac{\partial g_{ki}}{\partial x^m}\right)=\frac{1}{2}g^{im}\frac{\partial g_{mi}}{\partial x^k}=\frac{1}{2g}\frac{\partial g}{\partial x^k} \end{align}\] Covariant divergence of a vector: \[\begin{align} A^i_{;i}\equiv \frac{D A^i}{Dx^i}= \frac{\partial A^i}{\partial x^i}+\Gamma^i_{ki}A^k=\frac{\partial A^i}{\partial x^i} +\frac{1}{2g}\frac{\partial g}{\partial x^k}A^k=\frac{1}{ \sqrt{-g}}\frac{\partial \left(\sqrt{-g}\;A^i\right)}{\partial x^i} \end{align}\]

Action integral of gravity

Stricly speaking, the laws of gravitational field cannot be deduced from other branches of physics. One may apply just analogies: one expects second order partial differential equations (i.e., at most first derivatives in the Lagrangian density), the Lagrangian density is a scalar, field components are the components of the metric tensor.
Difficulty: no scalar can be compiled from the first derivatives of the metric (Christoffel's symbols). The only scalar at hand is the Ricci scalar (\({\mathcal R}\)) . This, however, contains second derivatives as well.
Solution: since \({\mathcal R}\) is linear in the second derivatives, we show that \[\begin{align} \int {\mathcal R}\sqrt{-g}d\Omega= \int G\sqrt{-g}d\Omega+ \int \frac{\partial \left(\sqrt{-g}\;w^i\right)}{\partial x^i}d\Omega \end{align}\] where \(G\) contains only first derivatives. Note the \(w^i\) does not transform as a vector.
Find second derivatives in \({\mathcal R}\sqrt{-g}\): \[\begin{align} {\mathcal R}\sqrt{-g}= \sqrt{-g}\;g^{ki}\;R^m_{kmi}=\sqrt{-g}\;g^{ki}\;\left( {\underline{ \frac{\partial \Gamma^m_{ki} }{\partial x^m} -\frac{\partial \Gamma^m_{km} }{\partial x^i}}} +\Gamma^m_{nm}\Gamma^n_{ki}-\Gamma^m_{ni}\Gamma^n_{km} \right) \end{align}\] Second derivatives appear only in the derivatives of Christoffel's symbols: \[\begin{align} \sqrt{-g}\left(g^{km}\;\frac{\partial \Gamma^i_{km} }{\partial x^i} -g^{ki}\;\frac{\partial \Gamma^m_{km} }{\partial x^i}\right) =\frac{\partial }{\partial x^i}\left(\sqrt{-g}\left[g^{km}\;\Gamma^i_{km}-g^{ki}\;\Gamma^m_{km}\right]\right) \end{align}\] \[\begin{align} -\left(\Gamma^i_{km}\frac{\partial \left(\sqrt{-g}\;g^{km}\right)}{\partial x^i}-\Gamma^m_{km}\frac{\partial \left(\sqrt{-g}\;g^{ki} \right)}{\partial x^i}\right) \end{align}\] Thus \[\begin{align} w^i=g^{km}\;\Gamma^i_{km}-g^{ki}\;\Gamma^m_{km} \end{align}\] and \[\begin{align} G=g^{ki}\;\left(\Gamma^m_{nm}\Gamma^n_{ki}-\Gamma^m_{ni}\Gamma^n_{km} \right) +\frac{\Gamma^m_{km}}{\sqrt{-g}}\frac{\partial \left(\sqrt{-g}\;g^{ki} \right)}{\partial x^i}-\frac{\Gamma^i_{km}}{\sqrt{-g}}\frac{\partial \left(\sqrt{-g}\;g^{km}\right)}{\partial x^i} \end{align}\] Expressing derivatives of the metric tensor in terms of Christoffel's symbols (\(g^{ik}_{;l}=0\)): \[\begin{align} \frac{\partial g^{im}}{\partial x^l}=-\Gamma^i_{kl}\;g^{km}-\Gamma^m_{kl}\;g^{ik} \end{align}\] Aplying this, we get: \[\begin{align} G=g^{ki}\;\left(\Gamma^m_{nm}\Gamma^n_{ki}-\Gamma^m_{ni}\Gamma^n_{km} \right) +\Gamma^m_{km}\;\Gamma^n_{in}\;g^{ki}-\Gamma^m_{km}\;\Gamma^i_{ni}\;g^{nk}-\Gamma^m_{km}\;\Gamma^k_{ni}\;g^{in}\end{align}\]\[\begin{align} {\underline{-\Gamma^i_{km}\;\Gamma^n_{in}\;g^{km}}}+\Gamma^i_{km}\;\Gamma^k_{ni}\;g^{nm}{\underline{+\Gamma^i_{km}\;\Gamma^m_{ni}\;g^{kn}}} \end{align}\] Hence \[\begin{align} G=g^{ki}\;\left(\Gamma^m_{ni}\Gamma^n_{km}-\Gamma^m_{nm}\Gamma^n_{ki} \right) \end{align}\] Lagrangian density: \[\begin{align} -\frac{c^3}{16\pi k}{\mathcal R}\sqrt{-g} \end{align}\] Minus sign ensures that the action integral be positive definite. \(k=6.67\times 10^{-11} \frac{{\rm m^3}}{{\rm kg s^2}}\) stands for the gravity constant.
tovább fel vissza
bene@arpad.elte.hu