Engedélyezze a JavaScript-et az oldal helyes működéséhez!
tovább fel vissza

General relativity

Dr. Gyula Bene
Department for Theoretical Physics, Loránd Eötvös University
Pázmány Péter sétány 1/A, 1117 Budapest
6. week

Energy-momentum tensor

Another derivation of energy-momentum tensor is given that yields a symmetric \(T_{ik}\).
Train of thought:
\[\begin{align} S=\frac{1}{c}\int \Lambda\sqrt{-g}\;d\Omega \end{align}\] Infinitesimal coordinate transformation: \[\begin{align} x'^i=x^i+\xi^i \end{align}\] (\(\xi^i\) is small) \[\begin{align} dx'^i=dx^i+\frac{\partial \xi^i}{\partial x^l}dx^l=\left(\delta^i_l+\frac{\partial \xi^i}{\partial x^l}\right)dx^l \end{align}\] \[\begin{align} g'^{ik}(x'^l)=g^{mn}(x^l)\left(\delta^i_m+\frac{\partial \xi^i}{\partial x^m}\right)\left(\delta^k_n+\frac{\partial \xi^k}{\partial x^n}\right)\approx g^{ik}(x^l)+g^{im}\frac{\partial \xi^k}{\partial x^m} +g^{kn}\frac{\partial \xi^i}{\partial x^n} \end{align}\] Rearranging the left hand side: \[\begin{align} g'^{ik}(x'^l)=g'^{ik}(x^l+\xi^l)=g'^{ik}(x^l)+\frac{\partial g'^{ik}}{\partial x^l}\xi^l\approx g'^{ik}(x^l)+\frac{\partial g^{ik}}{\partial x^l}\xi^l \end{align}\] Hence \[\begin{align} g'^{ik}(x^l)=g^{ik}(x^l)-\frac{\partial g^{ik}}{\partial x^l}\xi^l+g^{im}\frac{\partial \xi^k}{\partial x^m} +g^{kn}\frac{\partial \xi^i}{\partial x^n} \end{align}\] \[\begin{align} \xi^{i;k}+\xi^{k;i}&=g^{kn}\frac{\partial \xi^i}{\partial x^n}+g^{km}\Gamma^i_{ml}\xi^l +g^{im}\frac{\partial \xi^k}{\partial x^m}+g^{im}\Gamma^k_{ml}\xi^l \\ &=g^{im}\frac{\partial \xi^k}{\partial x^m}+g^{kn}\frac{\partial \xi^i}{\partial x^n} +\left(g^{km}g^{in}+g^{im}g^{kn}\right)\frac{1}{2}\left(\frac{\partial g_{nm}}{\partial x^l}+\frac{\partial g_{nl}}{\partial x^m} -\frac{\partial g_{ml}}{\partial x^n}\right)\xi^l \\ &=g^{im}\frac{\partial \xi^k}{\partial x^m}+g^{kn}\frac{\partial \xi^i}{\partial x^n} +g^{km}g^{in}\frac{\partial g_{nm}}{\partial x^l}\xi^l=g^{im}\frac{\partial \xi^k}{\partial x^m}+g^{kn}\frac{\partial \xi^i}{\partial x^n} -g^{km}g_{nm}\frac{\partial g^{in}}{\partial x^l}\xi^l \\ &=g^{im}\frac{\partial \xi^k}{\partial x^m}+g^{kn}\frac{\partial \xi^i}{\partial x^n} -\frac{\partial g^{ik}}{\partial x^l}\xi^l \end{align}\] Therefore \[\begin{align} g'^{ik}(x^l)=g^{ik}(x^l)+\delta g^{ik}(x^l)\;,\quad\quad \delta g^{ik}=\xi^{i;k}+\xi^{k;i} \end{align}\] Similarly (since \(g'^{ik}g'_{kl}=\delta^i_l\) ) \[\begin{align} g'_{ik}(x^l)=g_{ik}(x^l)+\delta g_{ik}(x^l)\;,\quad\quad \delta g_{ik}=-\xi_{i;k}-\xi_{k;i} \end{align}\] \[\begin{align} \delta S&=\frac{1}{c}\int \left\{\frac{\partial \left(\sqrt{-g}\Lambda\right)}{\partial g^{ik}}\delta g^{ik} +\frac{\partial \left(\sqrt{-g}\Lambda\right)}{\partial \left(\frac{\partial g^{ik}}{\partial x^l}\right)}\delta \left(\frac{\partial g^{ik}}{\partial x^l} \right)\right\}d\Omega \\ &=\frac{1}{c}\int \left\{\frac{\partial \left(\sqrt{-g}\Lambda\right)}{\partial g^{ik}} -\frac{\partial }{\partial x^l}\left(\frac{\partial \left(\sqrt{-g}\Lambda\right)}{\partial \left(\frac{\partial g^{ik}}{\partial x^l}\right)}\right)\right\}\delta g^{ik}\;d\Omega \end{align}\] Let \[\begin{align} T_{ik}=\frac{2}{\sqrt{-g}}\left\{\frac{\partial \left(\sqrt{-g}\Lambda\right)}{\partial g^{ik}} -\frac{\partial }{\partial x^l}\left(\frac{\partial \left(\sqrt{-g}\Lambda\right)}{\partial \left(\frac{\partial g^{ik}}{\partial x^l}\right)}\right)\right\} \end{align}\] (Symmetric!) Thus we have \[\begin{align} \delta S=\frac{1}{2c}\int T_{ik}\delta g^{ik}\;\sqrt{-g}\;d\Omega \end{align}\] Inserting the previous expression of \(\delta g^{ik}\): \[\begin{align} \delta S=\frac{1}{2c}\int T_{ik}\left(\xi^{i;k}+\xi^{k;i}\right)\;\sqrt{-g}\;d\Omega \end{align}\] or \[\begin{align} \delta S&=\frac{1}{c}\int T_{ik}\xi^{i;k}\;\sqrt{-g}\;d\Omega=\frac{1}{c}\int T^k_{i}\xi^{i}_{;k}\;\sqrt{-g}\;d\Omega \\ &=\frac{1}{c}\int \left(T^k_{i}\xi^{i}\right)_{;k}\;\sqrt{-g}\;d\Omega -\frac{1}{c}\int \xi^{i}\;T^k_{i;k}\;\sqrt{-g}\;d\Omega \end{align}\] In the first term we make use of the identity about the four divergence of vectors. We get \[\begin{align} \int \left(T^k_{i}\xi^{i}\right)_{;k}\;\sqrt{-g}\;d\Omega=\int \frac{\partial }{\partial x^k}\left(\sqrt{-g}\;T^k_{i}\xi^{i}\right)\;d\Omega \end{align}\] Applying Gauss's theorem, we get zero. The rest: \[\begin{align} \delta S=-\frac{1}{c}\int \xi^{i}\;T^k_{i;k}\;\sqrt{-g}\;d\Omega \end{align}\] Since \(\xi^{i}\) is arbitrary, we have \[\begin{align} T^k_{i;k}=0\;. \end{align}\] In flat spacetime this is identical with the continuity equation of the energy-momentum tensor.
Examples:
Electromagnetic field:
Lagrangian(without \(\sqrt{-g}\)): \[\begin{align} \Lambda=-\frac{\epsilon_0}{4}F_{ik}F^{ik}\end{align}\] Energy-momentum tensor: \[\begin{align} T_{ik}=\epsilon_0\left(-F_{il}F_k^l+\frac{1}{4}F_{lm}F^{lm}g_{ik}\right)\end{align}\] Macroscopic matter (dust, gas, fluid etc.)
\[\begin{align} T_{ik}=(p+\epsilon)u_iu_k-p\;g_{ik}\end{align}\] Here \(p\) stands for pressure, \(\epsilon\) for energy density (energy per unit volume), \(u^i\) for the four-velocity of matter.
tovább fel vissza
bene@arpad.elte.hu