nextupprevious

Fény terjedése inhomogén univerzumban



A Sachs-féle optikai egyenletek:
$ \begin{eqnarray} \frac{d\Theta}{d\lambda}+\Theta^2+\frac{1}{2}w^2=-\frac{1}{2}R_{jk}u^ju^k \end{eqnarray} $

$ \begin{eqnarray} \frac{dw_{\alpha\beta}}{d\lambda}+2\Theta w_{\alpha\beta} =C_{ ijkl}L^i_\alpha u^ju^kL^l_\beta \end{eqnarray} $

$ \begin{eqnarray} w^2=w_{\alpha\beta}w_{\beta\alpha} \end{eqnarray} $

$ \begin{eqnarray} \frac{dA}{d\lambda}=2\Theta A \end{eqnarray} $

$ \begin{eqnarray} I=L\frac{\Omega}{4\pi}\frac{\left(u^{t}(t_0)\right)^2}{\left(u^{t}(t_1)\right)^2A(t_0)} \end{eqnarray} $

$ \begin{eqnarray} z=\frac{u^t(t_1)}{u^t(t_0)}-1 \end{eqnarray} $

$ \begin{eqnarray} g_{ij}=g_{ij}^{(0)}+g_{ij}^{(1)}+g_{ij}^{(2)} \end{eqnarray}$

$ \begin{eqnarray} \Gamma_{jk}^i=\Gamma_{jk}^{i(0)}+\Gamma_{jk}^{i(1)}+\Gamma_{jk}^{i(2)} \end{eqnarray}$

$ \begin{eqnarray} R_{ij}=R_{ij}^{(0)}+R_{ij}^{(1)}+R_{ij}^{(2)} \end{eqnarray}$

$ \begin{eqnarray} C_{ijkl}=C_{ijkl}^{(1)}+C_{ijkl}^{(2)} \end{eqnarray}$

$ \begin{eqnarray} u^{i}=u^{i(0)}+u^{i(1)}+u^{i(2)} \end{eqnarray}$

$ \begin{eqnarray} w^{i}=w^{i(0)}+w^{i(1)}+w^{i(2)} \end{eqnarray}$

$ \begin{eqnarray} L^{i}_\alpha=L^{i(0)}_\alpha+L^{i(1)}_\alpha+L^{i(2)}_\alpha \end{eqnarray}$

$ \begin{eqnarray} \Theta=\Theta^{(0)}+\Theta^{(1)}+\Theta^{(2)} \end{eqnarray}$

$ \begin{eqnarray} w_{\alpha \beta}=w_{\alpha \beta}^{(1)}+w_{\alpha \beta}^{(2)} \end{eqnarray}$

$ \begin{eqnarray} A=A^{(0)}+A^{(1)}+A^{(2)} \end{eqnarray}$

$ \begin{eqnarray} t(\lambda)=t^{(0)}(\lambda)+t^{(1)}(\lambda)+t^{(2)}(\lambda) \end{eqnarray}$

$ \begin{eqnarray} r(\lambda)=r^{(0)}(\lambda)+r^{(1)}(\lambda)+r^{(2)}(\lambda) \end{eqnarray}$

$ \begin{eqnarray} \vartheta(\lambda)=\vartheta^{(0)}+\vartheta^{(1)}(\lambda)+\vartheta^{(2)}(\lambda) \end{eqnarray}$

$ \begin{eqnarray} \phi(\lambda)=\phi^{(0)}+\phi^{(1)}(\lambda)+\phi^{(2)}(\lambda) \end{eqnarray} $

$ \begin{eqnarray} z=z^{(0)}+z^{(1)}+z^{(2)} \end{eqnarray} $

$ \begin{eqnarray} z^{(0)}=\left(\frac{t_0}{t_1}\right)^{\frac{2}{3}}-1\;,\\ z^{(1)}=a(t_0)\left[u^{t(1)}(t_1)-(1+z^{(0)})u^{t(1)}(t_0)\right]\;,\\ z^{(2)}=a(t_0)\left[u^{t(2)}(t_1)-(1+z^{(0)})u^{t(2)}(t_0)\right]\\ -a^4(t_0)u^{t(1)}(t_0)\left[u^{t(1)}(t_1)-(1+z^{(0)})u^{t(1)}(t_0)\right] \end{eqnarray}$

$ \begin{eqnarray} \ln{I}-\ln{I^{(0)}(z)}= \left[\frac{z^{(1)}}{(1+z^{(0)})\left(\sqrt{1+z^{(0)}}-1\right)} -\frac{(1+z^{(0)})A^{(1)}}{9t_0^2\left(\sqrt{1+z^{(0)}}-1\right)^2} \right] \\ +\left[\frac{z^{(2)}}{(1+z^{(0)})\left(\sqrt{1+z^{(0)}}-1\right)} -\frac{(1+z^{(0)})A^{(2)}}{9t_0^2\left(\sqrt{1+z^{(0)}}-1\right)^2}\right.\\\left. +\frac{\left(2-3\sqrt{1+z^{(0)}}\right)z^{(1)2}}{4(1+z^{(0)})^2\left(\sqrt{1+z^{(0)}}-1\right)^2} +\frac{(1+z^{(0)})^2A^{(1)2}}{162t_0^4\left(\sqrt{1+z^{(0)}}-1\right)^4} \right] \end{eqnarray} $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

nextupprevious