Szabályaink értelmében a (23) állapot a mérőeszköznek
a mérőeszköz és mért objektum együttesére vonatkozó
állapota
(vö. (10) egyenlet, valamint az 1. és a 4. szabály).
A tapasztalattal összehasonlítható előrejelzéshez a 3. szabály értelmében
a
állapot kiszámítása szükséges.
Az egyszerűség
kedvéért tegyük fel, hogy ez az összetett rendszer izolált
23, így alkalmazható az 5. és 6. szabály
választással. Azt kapjuk, hogy
valószínűséggel
és
valószínűséggel
. Ebben a speciális példában
az eredmény pontosan ugyanaz,
mint amit a standard
kvantummechanika (speciálisan a mérési axiómák) alkalmazásával kapnánk.
Ez azonban a használt közelítések következménye, nem pedig valamilyen
általánosabb azonosság speciális megnyilvánulása. Azt gondolhatnánk, hogy
alkalmas körülmények között kísérletileg ellenőrizhető eltéréseket
kaphatunk. A helyzetet megnehezíti azonban az a körülmény, hogy
a standard kvantummechanikában a klasszikus és kvantumos tartományt
elválasztó határvonal a klasszikus tartomány irányában eltolható.
Ha tehát a határvonal egy bizonyos helyzete esetén sikerülne is
ellenőrizhető eltéréseket megjósolnunk, a standard felfogás megmenthető lenne
azzal, hogy a határvonalat mélyebbre tolnánk a klasszikus tartományba.
A második fejezetben felvázolt standard kvantummechanika valójában
egy jól alkalmazható,
rugalmas fenomenológia, amelyet azonban hiba lenne a valóság
minden szempontból következetes leírásának tekinteni.
Él-e még Schrödinger macskája? Erre a kérdésre is választ ad elméletünk.
Az, amit a macska tapasztal, annak az állapotának felel meg, ahol
a kvantumos referenciarendszer maga a macska. Az elmélet
valószínűséggel az élő és
valószínűséggel
a döglött állapotot jósolja. Feltehető az a kérdés is, hogy mit
tapasztal egy megfigyelő, ha megvizsgálja a macskát. Ekkor természetesen
a megfigyelőt is szerepeltetnünk kell az elméleti leírásban.
Azt kapjuk, hogy
valószínűsége van annak, hogy a megfigyelő a macskát
életben találja és
valószínűséggel van annak, hogy
döglötten találja. Azt is megkérdezhetjük, hogy milyen kapcsolat van
a macska által tapasztaltak és a megfigyelő észlelései között. Ehhez a 7.
szabályt kell alkalmaznunk. Azt kapjuk, hogy ha a macska él
(vagyis a saját magára vonatkozó állapota
), akkor a megfigyelő is
azt tapasztalja, hogy él, ha pedig a macska megdöglött,
akkor a megfigyelő is azt észleli, hogy megdöglött.
Hangsúlyozni kell azonban, hogy
mindebből nem következik, hogy akár a macska, akár a megfigyelő más,
tágabb környezetre (pl. a teljes univerzumra) vonatkozó állapotai is
ugyanezek, sem az, hogy a tágabb rendszer állapota egyetlen direkt szorzat
volna, melynek egy-egy tényezője felelne meg a macska ill. a megfigyelő
önmagára vonatkozó állapotának. A különböző kvantumos referenciarendszerek
esetén érvényes állapotok kapcsolatát ugyanis a (nem-determinisztikus)
5.-7. szabályok határozzák meg, melyekből ilyen következtetés nem vonható le.
Pl. a macska állapota a berendezést is magába foglaló tágabb
rendszerre vonatkozóan
Ez mélyen érinti fizikai világképünket. Az életet és a halált abszolút érvényűnek gondoltuk, észleléseink többségét ugyancsak. Mégis, most az derült ki, hogy még ezek is csak bizonyos speciális szemszögből érvényes kijelentések, bár a megfelelő kvantumos referenciarendszert természetesen nem tudjuk elhagyni. ``Röghöz kötöttségünk'' ellenére kiderítettük, hogy más nézőpontok (más kvantumos referenciarendszerek) is léteznek, melyek az elmélet szintjén a valóság egyenértékű részeit jelentik. A klasszikus fizikában már találkoztunk azzal a jelenséggel, hogy különböző koordinátarendszerekhez képest a valóság más és más arcát mutatja. Klasszikusan azonban a különböző leírások egyértelmű kapcsolatban állnak egymással. A kvantummechanika most bemutatott változatában ez nincs így. Ugyanannak a rendszernek ugyanabban a pillanatban különböző kvantumos referenciarendszerekre vonatkozóan olyan különböző állapotai vannak, melyeknek egymással való kapcsolatát legfeljebb valószínűségszámítási módszerekkel lehet jellemezni.